Skip to main content
Log in

Systematic Coarse Graining: “Four Lessons and A Caveat” from Nonequilibrium Statistical Mechanics

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

With the guidance offered by nonequilibrium statistical thermodynamics, simulation techniques are elevated from brute-force computer experiments to systematic tools for extracting complete, redundancy-free, and consistent coarse-grained information for dynamic systems. We sketch the role and potential of Monte Carlo, molecular dynamics, and Brownian dynamics simulations in the thermodynamic approach to coarse graining. A melt of entangled linear polyethylene molecules serves us as an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Grmela, H.C. Öttinger, Phys. Rev. E 56, 6620 (1997).

    Google Scholar 

  2. H.C. Öttinger, M. Grmela, Phys. Rev. E 56, 6633 (1997).

    Google Scholar 

  3. H.C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, Hoboken, N.J., 2005).

  4. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984, ed. 2).

  5. R. Kubo, M. Toda, N. Hashitsume, Nonequilibrium Statistical Mechanics, Vol. II of Statistical Physics (Springer, Berlin, 1991, ed. 2).

  6. H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer, Berlin, 1982).

  7. H.C. Öttinger, Phys. Rev. E 57, 1416 (1998).

  8. A.N. Gorban, N. Kazantzis, I.G. Kevrekidis, H.C. Öttinger, C. Theodoropoulos, Eds., Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena (Springer, Berlin, 2006).

  9. G. Milano, F. Müller-Plathe, J. Phys. Chem. B 109, 18609 (2005).

  10. Q. Sun, R. Faller, Macromolecules 39, 812 (2006).

  11. V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, K. Kremer, Macromolecules 39, 6708 (2006).

  12. J.T. Padding, W.J. Briels, J. Chem. Phys. 117, 925 (2002).

  13. H.C. Öttinger, J. Chem. Phys. 86, 3731 (1987).

  14. H.C. Öttinger, J. Chem. Phys. 90, 463 (1989).

  15. M. Kröger, Models for Polymeric and Anisotropic Liquids, No. 675 in Lecture Notes in Physics (Springer, Berlin, 2005).

  16. V.G. Mavrantzas, H.C. Öttinger, Macromolecules 35, 960 (2002).

  17. E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992).

  18. M.C. Tesi, E.J. Janse van Rensburg, E. Orlandini, S.G. Whittington, J. Stat. Phys. 82, 155 (1996).

  19. R. Faller, Q. Yan, J.J. de Pablo, J. Chem. Phys. 116, 5419 (2002).

  20. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

  21. F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001).

  22. R. Faller, J.J. de Pablo, J. Chem. Phys. 119, 4405 (2003).

  23. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, U.K., 2000).

  24. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics, Springer Series in Solid-State Sciences 80 (2) (Springer, Berlin, 1992).

  25. O.G. Mouritsen, Computer Studies of Phase Transitions and Critical Phenomena, Springer Series in Computational Physics (Springer, Berlin, 1984).

  26. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

  27. H.C. Öttinger, Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms (Springer, Berlin, 1996).

  28. S. Nosé, Mol. Phys. 52, 255 (1984).

  29. W.G. Hoover, Phys. Rev. A 31, 1695 (1995).

  30. S.D. Bond, B.J. Leimkuhler, B.B. Laird, J. Comput. Phys. 151, 114 (1999).

  31. B. Leimkuhler, Comput. Phys. Commun. 148, 206 (2002).

  32. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).

  33. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on Physics 73 (Clarendon, Oxford, 1986).

  34. M. Kröger, J. Ramírez, H.C. Öttinger, Polymer 43, 477 (2002).

  35. G. Ianniruberto, G. Marrucci, J. Non-Newtonian Fluid Mech. 79, 225 (1998).

  36. G. Marrucci, G. Ianniruberto, J. Non-Newtonian Fluid Mech. 82, 275 (1999).

  37. H.C. Öttinger, J. Non-Newtonian Fluid Mech. 89, 165 (2000).

  38. V.A. Harmandaris, V.G. Mavrantzas, D.N. Theodorou, Macromolecules 31, 7934 (1998).

  39. V.A. Harmandaris, V.G. Mavrantzas, D.N. Theodorou, Macromolecules 33, 8062 (2000).

    Google Scholar 

  40. V.A. Harmandaris, V.G. Mavrantzas, D.N. Theodorou, M. Kröger, J. Ramírez, H.C. Öttinger, D. Vlassopoulos, Macromolecules 36, 1376 (2003).

  41. H.C. Öttinger, Phys. Rev. E 50, 4891 (1994).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öttinger, H.C. Systematic Coarse Graining: “Four Lessons and A Caveat” from Nonequilibrium Statistical Mechanics. MRS Bulletin 32, 936–940 (2007). https://doi.org/10.1557/mrs2007.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.191

Navigation