Skip to main content
Log in

Hybrid Continuum Mechanics and Atomistic Methods for Simulating Materials Deformation and Failure

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Many aspects of materials deformation and failure are controlled by atomic-scale phenomena that can be explored using molecular statics and molecular dynamics simulations. However, many of these phenomena involve processes on multiple length scales with the result that full molecular statics/molecular dynamics simulations of the entire system are too large to be tractable. In this review, we discuss hybrid models that perform molecular statics/molecular dynamics simulations “without all the atoms,” aimed at retaining atomistic detail at a fraction of the computational cost. These methods couple a fully atomistic model in critical regions to regions described by less-expensive continuum methods where they can provide an adequate representation of the important physics. We give an overview of the challenges such models present, with a focus on recent work to address issues of dynamics and finite (non-zero) temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Saraev, R.E. Miller, Acta Mater. 54 (1), 33 (2006).

    Google Scholar 

  2. E.B. Tadmor, R.E. Miller, Quasicontinuum Method Web site, www.qcmethod.com (accessed August 2007).

  3. S. Kohlhoff, P. Gumbsch, H.F. Fischmeister, Philos. Mag. A 64 (4), 851 (1991).

  4. E.B. Tadmor, M. Ortiz, R. Phillips, Philos. Mag. A 73 (6), 1529 (1996).

  5. E.B. Tadmor, R. Phillips, M. Ortiz, Langmuir 12 (19), 4529 (1996).

  6. Z. Insepov, M. Sosnowski, I. Yamada, Nucl. Instrum. Methods Phys. Res. B 127, 269 (1997).

  7. V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Phys. Rev. Lett. 80 (4), 742 (1998).

  8. V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, M. Ortiz, J. Mech. Phys. Sol. 47, 611 (1999).

  9. R.E. Rudd, J.Q. Broughton, Phys. Rev. B 58 (10), R5893 (1998).

    Google Scholar 

  10. F.F. Abraham, N. Bernstein, J.Q. Broughton, D. Hess, MRS Bull. 25 (5), 27 (2000).

  11. R.E. Rudd, J.Q. Broughton, Phys. Status Solidi B 217, 251 (2000).

  12. E. Lidorikis, M.E. Bachlechner, R.K. Kalia, A. Nakano, P. Vashishta, G.Z. Voyiadjis, Phys. Rev. Lett. 87 (8), 086104/1–4 (2001).

  13. W. E, Z. Huang, Phys. Rev. Lett. 87 (13), 135501–1 (2001).

  14. L.E. Shilkrot, R.E. Miller, W.A. Curtin, Phys. Rev. Lett. 89 (2), 025501 (2002).

  15. G.J. Wagner, W.K. Liu, J. Comput. Phys. 190, 249 (2003).

  16. S.P. Xiao, T. Belytschko, Comput. Methods Appl. Mech. Eng. 193, 1645 (2004).

  17. D.K. Datta, R. Catalin Picu, M.S. Shephard, Int. J. Multiscale Computational Eng. 2 (3), 71 (2004).

  18. J. Fish, W. Chen, Comput. Methods Appl. Mech. Eng. 193, 1693 (2004).

  19. L.E. Shilkrot, R.E. Miller, W.A. Curtin, J. Mech. Phys. Sol. 52 (4), 755 (2004).

  20. G.J. Wagner, E.G. Karpov, W.K. Liu, Comput. Methods Appl. Mech. Eng. 193, 1579 (2004).

  21. R.E. Rudd, J.Q. Broughton, Phys. Rev. B 72 (14), 144104 (2005).

  22. B.Q. Luan, S. Hyun, J.F. Molinari, N. Bernstein, M.O. Robbins, Phys. Rev. E 74, 046710–1 (2007).

  23. S.J. Zhou, A.E. Carlsson, R. Thomson, Phys. Rev. B 47 (13), 7710 (1993).

  24. C. Woodward, S.I. Rao, Phys. Rev. Lett. 88 (21), 216402/1–4 (2002).

  25. S. Shen, S.N. Atluri, Comput. Model. Eng. Sci. 5, 235 (2004).

  26. W.A. Curtin, R.E. Miller, Model. Simul. Mater. Sci. Eng. 11 (3), R33 (2003).

  27. R.E. Miller, Int. J. Multiscale Comput. Eng. 1 (1), 57 (2003).

  28. R.E. Miller, E.B. Tadmor, J. Comput. Aided Mater. Des. 9, 203 (2002).

  29. W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, Comput. Methods Appl. Mech. Eng. 193, 1529 (2004).

  30. H.S. Park, W.K. Liu, Comput. Methods Appl. Mech. Eng. 193, 1733 (2004).

  31. G. Lu, E. Kaxiras, Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers, Stevenson Ranch, Calif., 2005, vol. 4) p. 22.

  32. W. E, B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden, Commun. Comput. Phys. 2 (3), 367 (2007).

  33. H. Gao, P. Klein, J. Mech. Phys. Sol. 46 (2), 187 (1998).

  34. P. Klein, H. Gao, Eng. Fracture Mech. 61, 21 (1998).

  35. H.T. Johnson, R. Phillips, L.B. Freund, “Electronic Structure Boundary Value Problems without All of the Atoms,” in Mater. Res. Soc. Symp. Proc. 538, V.V. Bulatov, T. Diaz de la Rubia, R. Phillips, E. Kaxiras, N. Ghoniem, eds. (Materials Research Society, Warrendale, PA, 1999) p. 479.

  36. P. Zhang, P.A. Klein, Y. Huang, H. Gao, P.D. Wu , Comput. Model. Eng. Sci. 3 (2), 263 (2002).

  37. P. Zhang, Y. Huang, H. Gao, K.C. Hwang, J. Appl. Mech. 69, 454 (2002).

  38. P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, Int. J. Sol. Struct. 39, 3893 (2002).

  39. K.J. Van Vliet, J. Li, T. Zhu, S. Yip, S. Suresh, Phys. Rev. B 67, 104105 (2003).

  40. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).

  41. E.B. Tadmor, G.S. Smith, N. Bernstein, E. Kaxiras, Phys. Rev. B 59 (1), 235 (1999).

  42. G.S. Smith, E.B. Tadmor, E. Kaxiras, Phys. Rev. Lett. 84 (6), 1260 (2000).

  43. M. Pitteri, Arch. Rational Mech. Anal. 88, 25 (1985).

  44. G. Zanzotto, Atti Accad. Naz. Lincei, Rend. Fis. 82, 725742, 743756 (1988).

  45. G. Zanzotto, Arch. Rational Mech. Anal. 121, 1 (1992).

  46. M. Dobson, R.S. Elliott, M. Luskin, E.B. Tadmor, Sci. Model. Simul. (2008) in press.

  47. W. E, J. Lu, J.Z. Yang, Phys. Rev. B 74 (21), 214115/1–12 (2006).

  48. T. Shimokawa, J.J. Mortensen, J. Schitz, K.W. Jacobsen, Phys. Rev. B 69, 214104/1–10 (2004).

  49. J. Knap, M. Ortiz, J. Mech. Phys. Sol. 49, 1899 (2001).

  50. J. Knap, M. Ortiz, Phys. Rev. Lett. 90, 226102 (2003).

  51. S. Prudhomme, P. Bauman, J.T. Oden, Int. J. Multiscale Comp. Eng. 4, 647 (2007).

  52. Marcel Arndt and Mitchell Luskin, “Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of a Frenkel-Kontorova model,” SIAM J. Multiscale Model. & Simul. (2007) in press.

  53. R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Model. Simul. Mater. Sci. Eng. 6, 607 (1998).

  54. A.R. Pillai, R.E. Miller, “Crack Behaviour at Bi-Crystal Interfaces: A Mixed Atomistic and Continuum Approach,” in Mater. Res. Soc. Symp. Proc. 653, L.P. Kubin, R.L. Selinger, J.L. Bassani, K. Cho, Eds. (Materials Research Society, Warrendale, PA, 2001) Z2.9.1.

  55. S. Hai, E.B. Tadmor, Acta Mater. 51 (1), 117 (2003).

  56. F. Sansoz, J.F. Molinari, Scripta Mater. 50, 1283 (2004).

  57. F. Sansoz, J.F. Molinari, Acta Mater. 53, 1931 (2005).

  58. E.B. Tadmor, R. Miller, R. Phillips, M. Ortiz, J. Mater. Res. 14 (6), 2233 (1999).

  59. R.E. Miller, L.E. Shilkrot, W.A. Curtin, Acta Mater. 52 (2), 271 (2003).

  60. M. Fago, R.L. Hayes, E.A. Carter, M. Ortiz, Phys. Rev. B 70 (10), 100102 (2004).

  61. G.S. Smith, E.B. Tadmor, N. Bernstein, E. Kaxiras, Acta Mater. 49 (19), 4089 (2001).

  62. E.B. Tadmor, U.V. Waghmare, G.S. Smith, E. Kaxiras, Acta Mater. 50, 2989 (2002).

  63. D. Qian, G.J. Wagner, W.K. Liu, Comput. Methods Appl. Mech. Eng. 193, 1603 (2004).

  64. P. Lin, Math. Comput. 72 (242), 657 (2003).

  65. W.E.P. Ming, J. Comput. Math. 22, 210 (2004).

  66. W.E.P. Ming, Frontiers and Prospects of Contemporary Applied Mathematics, T. Li, P. Zhang, Eds., (Higher Education Press, World Scientific, Singapore, 2005, vol. 18).

  67. X. Blanc, C. Le Bris, F. Legoll, ESAIM: M2AN 39, 797 (2005).

  68. X. Blanc, C. Le Bris, P.L. Lions, ESAIM: M2AN 41, 391 (2007).

  69. P. Lin, SIAM J. Numer. Anal. 45 (1), 313 (2007).

  70. M. Dobson, M. Luskin, ESAIM: M2AN (2007) in press.

  71. T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1987).

  72. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method (McGraw-Hill, London, vol. 1, ed. 4, 1989).

  73. J.N. Reddy, An Introduction to the Finite Element Method (McGraw-Hill, New York, ed. 2, 1993).

  74. Z.P. Bažant, Comp. Methods Appl. Mech. Eng. 16, 91 (1978).

  75. R. Mullen, T. Belytschko, Int. J. Num. Methods Eng. 18, 11 (1982).

  76. S.A. Adelman, J.D. Doll, J. Chem. Phys. 61 (10), 4242 (1974).

  77. J.D. Doll, L.E. Myers, J. Chem. Phys. 63 (11), 4908 (1975).

  78. W. Cai, M. de Koning, V.V. Bulatov, S. Yip, Phys. Rev. Lett. 85 (15), 3213 (2000).

  79. W.G. Hoover, Molecular Dynamics (Springer, Berlin, 1986).

  80. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

  81. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, ed. 2, 2002).

  82. B.L. Holian, A.F. Voter, R. Ravelo, Phys. Rev. E 52 (3), 2338 (1995).

  83. L.M. Dupuy, E.B. Tadmor, R.E. Miller, R. Phillips, Phys. Rev. Lett. 95, 060202 (2005).

  84. S. Qu, V. Shastry, W.A. Curtin, R.E. Miller, Model. Simul. Mater. Sci. Eng. 13 (7), 1101 (2005).

  85. B.L. Holian, R. Ravelo, Phys. Rev. B 51 (17), 11275 (1995).

  86. D. Holland, M. Marder, Adv. Mater. 11, 793 (1999).

  87. B. Shiari, R.E. Miller, W.A. Curtin, ASME J. Eng. Mater. Technol.–Trans. ASME 127 (4), 358 (2005).

  88. B. Shiari, R.E. Miller, D.D. Klug, J. Mech. Phys. Solids (2007) in press.

  89. M.W. Finnis, P. Agnew, A.J.E. Foreman, Phys. Rev. B 44 (2), 567 (1991).

  90. N. Choly, G. Lu, W. E, E. Kaxiras, Phys. Rev. B 71 (9), 094101 (2005).

    Google Scholar 

  91. G. Lu, E.B. Tadmor, E. Kaxiras, Phys. Rev. B 73 (2) 024108 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R.E., Tadmor, E.B. Hybrid Continuum Mechanics and Atomistic Methods for Simulating Materials Deformation and Failure. MRS Bulletin 32, 920–926 (2007). https://doi.org/10.1557/mrs2007.189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.189

Navigation