Skip to main content
Log in

Structural Aspects of Metallic Glasses

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A recent structural model reconciles apparently conflicting features of randomness, short-range order, and medium-range order that coexist in metallic glasses. In this efficient cluster packing model, short-range order can be described by efficiently packed solute-centered clusters, producing more than a dozen established atomic clusters, including icosahedra. The observed preference for icosahedral short-range order in metallic glasses is consistent with the theme of efficient atomic packing and is further favored by solvent-centered clusters. Driven by solute–solute avoidance, medium-range order results from the organization in space of overlapping, percolating (via connected pathways), quasi-equivalent clusters. Cubic-like and icosahedral-like organization of these clusters are consistent with measured medium-range order. New techniques such as fluctuation electron microscopy now provide more detailed experimental studies of medium-range order for comparison with model predictions. Microscopic free volume in the efficient cluster packing model is able to represent experimental and computational results, showing free volume complexes ranging from subatomic to atomic-level sizes. Free volume connects static structural models to dynamic processes such as diffusion and deformation. New approaches dealing with “free” and “anti-free” microscopic volume and coordinated atomic motion show promise for modeling the complex dynamics of structural relaxations such as the glass transition. Future work unifying static and dynamic structural views is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.H. Gaskell, “Models for the structure of amorphous solids,” in Materials Science and Technology, J. Zarzycki, Ed. (VCH Cambridge, UK, 1991) p. 175.

  2. P.H. Gaskell, J. Non-Cryst. Solids 351, 1003 (2005).

    Article  CAS  Google Scholar 

  3. J.D. Bernal, Nature 185, 68 (1960).

    Article  Google Scholar 

  4. J.D. Bernal, J. Mason, Nature 188, 910 (1960).

  5. J.D. Bernal, Proc. R. Soc. London, Ser. A 280, 299 (1964).

  6. H.J. Frost, R. Raj, J. Am. Ceram. Soc. 65, C19 (1982).

  7. J.A. Dodds, in Physics of Granular Media, E. Bideau, J. Dodds, Eds. (Nova Science Publishers, NY, 1991) p. 57.

  8. P.H. Gaskell, J. Non-Cryst. Solids 32, 207 (1979).

  9. A. Inoue, Mater. Sci. Eng. A226–228, 357 (1997).

  10. P.H. Gaskell, in Topics in Applied Physics, Glassy Metals II, H. Beck, H.-J. Guntherodt, Eds. (Springer, Berlin, 1983) p. 5.

  11. J. Sietsma, B.J. Thijsse, J. Non-Cryst. Solids 135, 146 (1991).

  12. P. Lamparter, S. Steeb, in Structure of Solids, V. Gerold, Ed. (VCH Weinheim, 1993) p. 217.

  13. T.C. Hufnagel, S. Brennan, Phys. Rev. B 67, 014203 (2003).

  14. P.M. Ossi, Disordered Materials (Springer, Berlin, 2003).

  15. D.B. Miracle, J. Non-Cryst. Solids 242, 89 (2004).

  16. D.B. Miracle, E.A. Lord, S. Ranganathan, Trans. JIM 47, 1737 (2006).

  17. J.W. Cahn, L.A. Bendersky, in Amorphous and Nanocrystalline Metals, R. Busch, T.C. Hufnagel, J. Eckert, A. Inoue, W.L. Johnson, A.R. Yavari, Eds., 806 (MRS, Warrendale, PA, 2004) p. 139.

  18. D.B. Miracle, Nature Mater. 3, 697 (2004).

  19. D.B. Miracle, Acta Mater. 54, 4317 (2006).

  20. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439, 419 (2006).

  21. G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, Phys. Rev. Lett. 93, 037802 (2004).

  22. L.Q. Xing, A. Mukhopadhyay, W.E. Buhro, K.F. Kelton, Philos. Mag. Lett. 84, 293 (2004).

  23. Y. Zhang, A.L. Greer, Appl. Phys. Lett. 89, 071907 (2006).

  24. F.H.M. Zetterling, M. Dzugutov, S.I. Simdyankin, J. Non-Cryst. Solids 293–295, 39 (2001).

  25. J.L. Finney, Nature 266, 309 (1977).

  26. D.E. Polk, Acta Metall. 20, 485 (1972).

  27. F.C. Frank, Proc. R. Soc. London, Ser. A 215, 43 (1952).

  28. L.Q. Xing, T.C. Hufnagel, J. Eckert, W. Loser, L. Schultz, Appl. Phys. Lett. 77, 1970 (2000).

  29. J. Saida, M. Matsushita, A. Inoue, J. Appl. Phys. 90, 4717 (2001).

  30. J. Saida, M. Matsushita, A. Inoue, Mater. Trans. JIM 42, 1493 (2001).

  31. K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, Phys. Rev. Lett. 90, 195504 (2003).

  32. B.S. Murty, D.H. Ping, K. Hono, A. Inoue, Acta Mater. 48, 3985 (2000).

  33. A. Inoue, T. Zhang, J. Saida, M. Matsushita, M.W. Chen, T. Sakurai, Mater. Trans. JIM 40, 1181 (1999).

  34. M.W. Chen, T. Zhang, A. Inoue, Appl. Phys. Lett. 75, 1697 (1999).

  35. A. Inoue, T. Zhang, M.W. Chan, T. Sakurai, J. Mater. Res. 15, 2195 (2000).

  36. U. Kuhn, J. Eckert, N. Mattern, L. Schultz, Appl. Phys. Lett. 77, 3176 (2000).

  37. J. Saida, A. Inoue, J. Phys.: Condens. Matter 13, L73 (2001).

  38. T.H. Kim, A.K. Gangopadhyay, L.Q. Xing, G.W. Lee, Y.T. Shen, K.F. Kelton, A.I. Goldman, R.W. Hyers, J.R. Rogers, Appl. Phys. Lett. 87, 251924 (2005).

  39. B.S. Murty, K. Hono, Mater. Sci. Eng. A312, 253 (2001).

  40. W.K. Luo, H.W. Sheng, F.M. Alamgir, J. M. Bai, J.H. He, E. Ma, Phys. Rev. Lett. 92, 145502 (2004).

  41. M.M.J. Treacy, J.M. Gibson, L. Fan, D. J. Paterson, I. McNulty, Rep. Prog. Phys. 68, 2899 (2005).

  42. P.M. Voyles, J.E. Gerbi, M.M.J. Treacy, J. M. Gibson, J.R. Abelson, Phys. Rev. Lett. 86, 5514 (2001).

  43. W.G. Stratton, J. Hamann, J.H. Perepezko, P.M. Voyles, X. Mao, S.V. Khare, Appl. Phys. Lett. 86, 141910 (2005).

  44. J.M. Gibson, M.M.J. Treacy, in The Electron: Proceedings of the International Centennial Symposium on the Electron, A. Kirkland, P.D. Brown, Eds., Book 687 (IOM Communications, London, 1998) p. 212.

  45. G.S. Cargill, F. Spaepen, J. Non-Cryst. Solids 43, 91 (1981).

  46. M.A. Marcus, Acta Metall. 27, 879 (1979).

  47. A.I. Taub, F. Spaepen, Acta Metall. 28, 1781 (1980).

  48. A. Van den Beukel, J. Sietsma, Acta Metall. 38, 383 (1990).

  49. U. Harms, O. Jin, R.B. Schwarz, J. Non-Cryst. Solids 317, 200 (2003).

  50. T. Egami, K. Maeda, D. Srolovitz, V. Vitek, J. de Phys. 41, C8 272 (1980).

  51. D. Srolovitz, T. Egami, V. Vitek, Phys. Rev. B 24, 6936 (1981).

  52. J. Sietsma, B.J. Thijsse, Phys. Rev. B 52, 3248 (1995).

  53. J.D. Bernal, Nature 183, 141 (1959).

  54. J.D. Bernal, in Liquids: Structure, Properties, Solid Interactions, T.J. Hughel, Ed. (Elsevier, Amsterdam, 1965) p. 25.

  55. K.M. Flores, D. Suh, R.H. Dauskardt, J. Mater. Res. 17, 1153 (2002).

  56. P. Asoka-Kumar, J. Hartley, R. Howell, P. A. Sterne, T.G. Nieh, Appl. Phys. Lett. 77, 1973 (2000).

  57. B.P. Kanungo, S.C. Glade, P. Asoka-Kumar, K.M. Flores, Intermetallics 12, 1073 (2004).

  58. C. Nagel, K. Ratzke, E. Schmidtke, F. Faupel, W. Ulfert, Phys. Rev. B 60, 9212 (1999).

  59. D. Suh, P. Asoka-Kumar, P.A. Sterne, R.H. Howell, R.H. Dauskardt,, J. Mater. Res. 18, 2021 (2003).

  60. K.M. Flores, B.P. Kanungo, S.C. Glade, P. Asoka-Kumar, J. Non-Cryst. Solids, 353, 1201 (2007).

  61. K.M. Flores, E. Sherer, A. Bharathula, H. Chen, Y.C. Jean, Acta Mater. 55, 3403 (2007).

  62. F. Spaepen, Acta Metall. 25, 407 (1977).

  63. A.S. Argon, Acta Metall. 27, 47 (1979).

  64. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959).

  65. A.J. Batschinski, Z. Phys. Chem. 84, 643 (1913).

  66. P. Klugkist, K. Ratzke, S. Rehders, P. Troche, F. Faupel, Phys. Rev. Lett. 80, 3288 (1998).

  67. F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, H. Teichler, Rev. Mod. Phys. 75, 237 (2003).

  68. H.R. Schober, Physica 201A, 14 (1993).

  69. P. DeHey, J. Sietsma, A.V.D. Beukel, Acta Mater. 46, 5873 (1998).

  70. K. Hajlaoui, T. Benameur, G. Vaughan, A. R. Yavari, Scripta Mater. 51, 843 (2004).

  71. F.H. Stillinger, T.A. Weber, Science 225, 983 (1984).

  72. M. Goldstein, J. Chem. Phys. 51, 3739 (1969).

  73. T. Egami, Rep. Prog. Phys. 47, 1601 (1984).

  74. Y. Suzuki, J. Haimovic, T. Egami, Phys. Rev. 35, 2162 (1987).

  75. T. Egami, Mater. Sci. Eng. A226–228, 261 (1997).

  76. T. Egami, D. Srolovitz, J. Phys. F: Metal Phys. 12, 2414 (1982).

  77. S.-P. Chen, T. Egami, V. Vitek, Phys. Rev. 37, 2440 (1988).

    Article  CAS  Google Scholar 

  78. T. Egami, S. J. Poon, Z. Zhang, V. Keppens, Phys. Rev. B76, 024203 (2007).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miracle, D.B., Egami, T., Flores, K.M. et al. Structural Aspects of Metallic Glasses. MRS Bulletin 32, 629–634 (2007). https://doi.org/10.1557/mrs2007.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.124

Navigation