Skip to main content
Log in

Materials for Multiphoton 3D Microfabrication

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Two-photon/multiphoton lithography (MPL) has emerged as a versatile technique for the fabrication of complex 3D polymeric, hybrid organic/inorganic, and metallic structures. This article reviews some recent advances in the development of molecules and materials that enable two-photon and multiphoton 3D micro- and nanofabrication. Materials that exhibit high sensitivity for the generation of reactive intermediates are described, as are various materials systems that enable functional devices to be made and in some cases enable structures to be replicated. The combination of advances illustrates the opportunities for MPL to have a significant impact in the areas of photonics, microelectromechanical systems, and biomedical technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Lewis, G.M. Gratson, Mater. Today 7 (7/8), 32 (2004); H.-B. Sun, S. Kawata, Adv. Poly. Sci. 170, 169 (2004).

    Article  CAS  Google Scholar 

  2. U. Stute, J. Serbin, C. Kulik, B.N. Chichkov, Int. J. Mater. Prod. Tech. 21 (4), 273 (2004).

    Article  CAS  Google Scholar 

  3. A. Ostendorf, B.N. Chichkov, Photonics Spectra 40 (10), 72 (2006).

  4. S. Tyagi et al., IEEE Tech. Dig.—Int. Electron Dev. Meet. (2005) pp. 1070–1072.

  5. C. Minelli et al., Chimia 57 (10), 646 (2003).

  6. G.R. Dieckmann et al., J. Am. Chem. Soc. 125 (7), 1770 (2003).

  7. M.-C. Daniel, D. Astruc, Chem. Rev. 104 (1), 293 (2004).

  8. S.Y. Lin et al., Nature 394, 251 (1998).

  9. J.A. Lewis, Adv. Funct. Mater. 16 (17), 2193 (2006).

    Article  CAS  Google Scholar 

  10. X. Zhang, X.N. Jiang, C. Sun, Sens. Actuators, A A77 (2), 149 (1999).

  11. J.H. Moon, J. Ford, S. Yang, Polym. Adv. Tech. 17, 83 (2006).

  12. W. Denk, J.H. Strickler, W.W. Webb, Science 248, 73 (1990).

  13. J.H. Strickler, W.W. Webb, Opt. Lett. 16, 1780 (1991).

  14. D.A. Parthenopoulos, P.M. Rentzepis, Science 245, 843 (1989).

  15. B.H. Cumpston et al., Nature 398, 51 (1999).

  16. C.E. Olson, M.J.R. Previte, J.T. Fourkas, Nature Mater. 1 (4), 225 (2002).

  17. S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001).

  18. K.J. Schafer et al., J. Photochem. Photobiol., A 162 (2–3), 497 (2004).

  19. I. Wang et al., Opt. Lett. 27 (15), 1348 (2002).

  20. C. Xu, W.W. Webb, J. Opt. Soc. Am. B: Opt. Phys. 13, 481 (1996). GM stands for Goeppert-Mayer units, named after the physicist Maria Goeppert-Mayer, who predicted two-photon absorption.

  21. M. Albota et al., Science 281, 1653 (1998); E. Zojer et al., J. Chem. Phys. 116, 3646 (2002); D. Beljonne et al., Adv. Funct. Mater. 12, 631 (2002).

  22. J. Serbin et al., Opt. Lett. 28 (5), 301 (2003).

  23. C.A. Coenjarts, C.K. Ober, Chem. Mater. 16 (26), 5556 (2004).

  24. L.H. Nguyen, M. Straub, M. Gu, Adv. Funct. Mater. 15 (2), 209 (2005).

  25. T. Baldacchini, J. Appl. Phys. 95 (11), 6072 (2004).

  26. W. Zhou et al., Science 296, 1106 (2002).

  27. T. Yu et al., Adv. Mater. 15 (6), 517 (2003).

  28. F. Stellacci et al., Adv. Mater. 14 (3), 194 (2002).

  29. A. Ishikawa, T. Tanaka, S. Kawata, Appl. Phys. Lett. 89 (11), 113101 (2006).

  30. C.N. LaFratta et al., Chem. Mater. 18 (8), 2038 (2006).

  31. S. Kawata, Y. Kawata, Chem. Rev. 100 (5), 1777 (2000).

  32. C.C. Corredor, Z.-L. Huang, K.D. Belfield, Adv. Mater. 18 (21), 2910 (2006).

  33. J. Serbin, M. Gu, Opt. Express 14, 3565 (2006).

  34. P. Galajda, P. Ormos, Appl. Phys. Lett. 78 (2), 249 (2001).

  35. S. Maruo, H. Inoue, Appl. Phys. Lett. 89 (14), 144101 (2006).

  36. S.M. Kuebler et al., J. Photopolym. Sci. Technol. 14, 657 (2001).

  37. H.-B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74 (6), 786 (1999).

  38. J. Serbin, A. Ovsianikov, B. Chichkov, Opt. Express 12 (21), 5221 (2004).

  39. M. Straub, M. Gu, Opt. Lett. 27 (20), 1824 (2002).

  40. N. Tetreault et al., Adv. Mater. 18 (4), 457 (2006).

  41. A. Doraiswamy et al., Acta Biomater. 2 (3), 267 (2006).

  42. R.A. Farrer et al., J. Am. Chem. Soc. 128 (6), 1796 (2006).

  43. W. Dong, J.W. Perry, PMSE Preprints 94, 52 (2006).

  44. C.N. LaFratta et al., J. Phys. Chem. B 108 (31), 11256 (2004).

    Article  CAS  Google Scholar 

  45. C.N. LaFratta, L. Li, J.T. Fourkas, Proc. Natl. Acad. Sci. USA 103 (23), 8589 (2006).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marder, S.R., Brédas, JL. & Perry, J.W. Materials for Multiphoton 3D Microfabrication. MRS Bulletin 32, 561–565 (2007). https://doi.org/10.1557/mrs2007.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.107

Navigation