Skip to main content
Log in

Recent Developments in Bulk Thermoelectric Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Good thermoelectric materials possess low thermal conductivity while maximizing electric carrier transport. This article looks at various classes of materials to understand their behavior and determine methods to modify or “tune” them to optimize their thermoelectric properties. Whether it is the use of “rattlers” in cage structures such as skutterudites, or mixed-lattice atoms such as the complex half-Heusler alloys, the ability to manipulate the thermal conductivity of a material is essential in optimizing its properties for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29 (1999) p. 89 and references therein.

    Google Scholar 

  2. C. Uher, in Semiconductors and Semimetals, Vol. 69, edited by T.M. Tritt (Academic Press, New York, 2000) p. 139 and references therein.

    Google Scholar 

  3. B.C. Sales, in Handbook of the Physics and Chemistry of Rare Earths, Vol. 33 (Elsevier Science, Amsterdam, 2002) p. 1.

    Google Scholar 

  4. J.-P. Fleurial, A. Borshchevsky, T. Caillat, D.T. Morelli, and G.P. Meisner, in Proc. 15th Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 1996) p. 91.

    Google Scholar 

  5. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272 (1996) p. 1325.

    Google Scholar 

  6. G.S. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schujman, Appl. Phys. Lett. 73 (1998) p. 176.

    Google Scholar 

  7. D.T. Morelli, G.P. Meisner, B. Chen, S. Hu, and C. Uher, Phys. Rev B 56 (1997) p. 7376.

    Google Scholar 

  8. G.S. Nolas, M. Kaeser, R. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77 (2000) p. 1822.

    Google Scholar 

  9. J.S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, and T. Hirai, J. Appl. Phys. 91 (2002) p. 3698.

    Google Scholar 

  10. X. Tanga, Q. Zhang, L. Chen, T. Goto, and T. Hirai, J. Appl. Phys. 97 093712 (2005).

    Google Scholar 

  11. M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Müller, and J. Hejtmanek, J. Appl. Phys. 97 083712 (2005).

    Google Scholar 

  12. M. Puyet, B. Lenoi, A. Dauscher, M. Dehmas, C. Stiewe, and E. Müller, J. Appl. Phys. 95 (2004) p. 4852.

    Google Scholar 

  13. G.A. Slack and V.G. Tsoukala, J. Appl. Phys. 76 (1994) p. 1665.

    Google Scholar 

  14. G.S. Nolas, G.A. Slack, and S.B. Schujman, in Semiconductors and Semimetals, Vol. 69, edited by T.M. Tritt (Academic Press, San Diego, 2001) p. 255.

    Google Scholar 

  15. N.P. Blake, S. Latturner, J.D. Bryan, G.D. Stucky, and H. Metiu, J. Chem. Phys. 115 (2001) p. 8060.

    Google Scholar 

  16. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87 (2000) p. 7871.

    Google Scholar 

  17. G.S. Nolas, Thermoelectrics Handbook: Macro- to Nano-Structured Materials, edited by D.M. Rowe (CRC Press, Boca Raton, FL) in press.

  18. A. Bentien, V. Pacheco, S. Paschen, Y. Grin, and F. Steglich, Phys. Rev. B 71 165206 (2005).

    Google Scholar 

  19. G.K.H. Madsen, K. Schwarz, P. Blaha, and D.J. Singh, Phys. Rev. B 68 125212 (2003).

    Google Scholar 

  20. W. Jeischko, Metall. Trans. A 1 (1970) p. 3159.

    Google Scholar 

  21. S.J. Poon, in Recent Trends in Thermoelectric Materials Research II, edited by T.M. Tritt, Semiconductors and Semimetals, Vol. 70, Chap. 2, treatise editors, R.K. Willardson and E.R. Weber (Academic Press, New York, 2001) p. 37.

    Google Scholar 

  22. J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, and M.A. Kouacou, J. Phys. Condens. Matter 10 (1998) p. 1013.

    Google Scholar 

  23. F.G. Aliev, N.B. Brandt, V.V. Moschalkov, V.V. Kozyrkov, R.V. Scolozdra, and A.I. Belogorokhov, Phys. B: Condens. Matter 75 (1989) p. 167.

    Google Scholar 

  24. S. Ogut and K.M. Rabe, Phys. Rev. B 51 (1995) p. 10443.

    Google Scholar 

  25. W.E. Pickett and J.S. Moodera, Phys. Today 54 (2001) p. 39.

    Google Scholar 

  26. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59 (1999) p. 8615.

    Google Scholar 

  27. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, and E. Bucher, J. Phys. Condens. Matter 11 (1999) p. 1697.

    Google Scholar 

  28. S. Sportouch, P. Larson, M. Bastea, P. Brazis, J. Ireland, C.R. Kannenwurf, S.D. Mahanti, C. Uher, and M.G. Kanatzidis, in Thermoelectric Materials 1998—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA , 1999) p. 421.

  29. S. Bhattacharya, A.L. Pope, R.T. Littleton IV, T.M. Tritt, V. Ponnambalam, Y. Xia, and S.J. Poon, Appl. Phys. Lett. 77 (2000) p. 2476.

    Google Scholar 

  30. Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L. Pope, S.J. Poon, and T.M. Tritt, J. Appl. Phys. 88 (2000) p. 1952.

    Google Scholar 

  31. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79 (2001) p. 4165.

    Google Scholar 

  32. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86 (2005) p. 2105.

    Google Scholar 

  33. S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, and J. Blumm, Appl. Phys. Lett. 88 042106 (2006).

    Google Scholar 

  34. Y. Yang, G.P. Meisner, and L. Chen, Appl. Phys. Lett. 85 (2004) p. 1140.

    Google Scholar 

  35. J.W. Sharp, S.J. Poon, and H.J. Goldsmid, Phys. Status Solidi A 187 (2001) p. 507.

    Google Scholar 

  36. S. Bhattacharya, T.M. Tritt, Y. Xia, V. Ponnambalam, S.J. Poon, and N. Thadhani, Appl. Phys. Lett. 81 (2002) p. 43.

    Google Scholar 

  37. H.W. Mayer, I. Mikhail, and K. Schubert, J. Less-Common Metals 59 (1978) p. 43.

    Google Scholar 

  38. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58 (1997) p. 1119.

    Google Scholar 

  39. V.L. Kuznetsov and D.M. Rowe, J. Alloys Compd. 372 (2004) p. 103.

    Google Scholar 

  40. S.C. Ur, I.H. Kim, and P. Nash, Mater. Lett. 58 (2004) p. 2132.

    Google Scholar 

  41. K. Ueno, A. Yamamoto, T. Noguchi, T. Inoue, S. Sodeoka, H. Takazawa, C.H. Lee, and H. Obara, J. Alloys Compd. 385 (2004) p. 254.

    Google Scholar 

  42. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nature Mater. 3 (2004) p. 458.

    Google Scholar 

  43. M. Tsutsui, L.T. Zhang, K. Ito, and M. Yamaguchi, Intermetallics 12 (2004) p. 809.

    Google Scholar 

  44. F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G.J. Snyder, M. Christensen, and B.B. Inversen, Chem. Eur. J. 20 (2004) p. 3861.

    Google Scholar 

  45. S.G. Kim, I.I. Mazin, and D.J. Singh, Phys. Rev. B 57 (1998) p. 6199.

    Google Scholar 

  46. J. Nylen, M. Andersson, S. Lidin, and U. Haeussermann, J. Am. Chem. Soc. 126 (2004) p. 16306.

    Google Scholar 

  47. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).

    Google Scholar 

  48. E. Skrabeck and D.S. Trimmer, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995) p. 267.

    Google Scholar 

  49. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413 (2001) p. 597.

    Google Scholar 

  50. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297 (2002) p. 2229.

    Google Scholar 

  51. L.D. Hicks, T.C. Harman, and M.S. Dresselhaus, Appl. Phys. Lett. 63 (1993) p. 3230.

    Google Scholar 

  52. D.Y. Chung, S. Jobic, T. Hogan, C.R. Kannewurf, R. Brec, J. Rouxel, and M.G. Kanatzidis, J. Amer. Chem. Soc. 119 (1997) p. 2505.

    Google Scholar 

  53. T.J. McCarthy, S.P. Ngeyi, J.H. Liao, D.C. DeGroot, T. Hogan, C.R. Kannewurf, and M.G. Kanatzidis, Chem. Mater. 5 (1993) p. 331.

    Google Scholar 

  54. T. Kyratsi, J.S. Dyck, W. Chen, D.Y. Chung, C. Uher, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Appl. Phys. 92 (2002) p. 965.

    Google Scholar 

  55. M.G. Kanatzidis, T.J. McCarthy, T.A. Tanzer, L. Chen, L. Iordanidis, T. Hogan, C.R. Kannewurf, C. Uher, and B. Chen, Chem. Mater. 8 (1996) p. 1465.

    Google Scholar 

  56. D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C.R. Kannewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, Science 287 (2000) p. 1024.

    Google Scholar 

  57. D.Y. Chung, T.P. Hogan, M. Rocci-Lane, P. Brazis, J.R. Ireland, C.R. Kannewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. 126 (2004) p. 6414.

    Google Scholar 

  58. B. Wolfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett. 86 (2001) p. 4350.

    Google Scholar 

  59. J.W. Sharp, B.C. Sales, and D.G. Mandrus, Appl. Phys. Lett. 74 (1999) p. 3794.

    Google Scholar 

  60. K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Appl. Phys. Lett. 87 061919 (2005).

    Google Scholar 

  61. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303 (2004) p. 818.

    Google Scholar 

  62. S. Sportouch, M. Bastea, P. Brazis, J. Ireland, C.R. Kannewurf, C. Uher, and M.G. Kanatzidis, in Thermoelectric Materials 1998—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1999) p. 123.

  63. E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis, J. Amer. Chem. Soc. 127 (2005) p. 9177.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolas, G.S., Poon, J. & Kanatzidis, M. Recent Developments in Bulk Thermoelectric Materials. MRS Bulletin 31, 199–205 (2006). https://doi.org/10.1557/mrs2006.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.45

Keywords

Navigation