Skip to main content
Log in

Atomic Control of the Electronic Structure at Complex Oxide Heterointerfaces

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The following article is based on the Outstanding Young Investigator Award presentation given by Harold Y. Hwang of the University of Tokyo on March 29, 2005, at the Materials Research Society Spring Meeting in San Francisco. Hwang was cited for “innovative work on the physics of transition-metal oxides and the atomic-scale synthesis of complex oxide heterostructures.” Perovskite oxides range from insulators to superconductors and can incorporate magnetism as well as couple to phonon instabilities. The close lattice match between many perovskites raises the possibility of growing epitaxial thin-film heterostructures with different ground states that may compete or interact. The recent development of superconducting Josephson junctions, magnetic tunnel junctions, ferroelectric memory cells, and resistive switching can be considered examples within this new heteroepitaxial family. In this context, Hwang presents his studies of electronic structure at atomically abrupt interfaces grown by pulsed laser deposition. Some issues are generic to all heterointerfaces, such as the stability of dopant profiles and diffusion, interface states and depletion, and interface charge arising from polarity discontinuities. A more unusual issue is the charge structure associated with Mott insulator/band insulator interfaces. The question is, how should one consider the correlated equivalent of band bending? This semiconductor concept is based on the validity of rigid single-particle band diagrams, which are known to be an inadequate description for strongly correlated electrons. In addition to presenting an interesting scientific challenge, this question underlies the attempts to develop new applications of doped Mott insulators in device geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For example, see N. Tsuda, K. Nasu, A. Fujimori, and K. Siratori, Electronic Conduction in Oxides (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  2. E. Dagotto, Science 309 (2005) p. 257.

    Google Scholar 

  3. J.G. Bednorz and K.A. Mueller, Z. Phys. B 64 (1986) p. 189.

    Google Scholar 

  4. For example, see J.N. Eckstein, I. Bozovic, M.E. Klausmeier-Brown, G.F. Virshup, and K.S. Ralls, MRS Bull. 17 (8) (1992) p. 27.

    Google Scholar 

  5. O. Auciello, J.F. Scott, and R. Ramesh, Phys. Today 51 (7) (1998) p. 22.

    Google Scholar 

  6. For a review, see Y. Tokura, ed., Colossal Magnetoresistive Oxides (Gordon and Breach, New York, 2000).

  7. For example, see H. Koinuma, ed., “Crystal Engineering of High Tc-Related Oxide Films,” MRS Bull. 19 (9) (1994) p. 21.

  8. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, London, 1991).

    Google Scholar 

  9. S.A. Chambers and Y.K. Yoo, eds., “New Materials for Spintronics,” MRS Bull. 28 (10) (2003) p. 706.

  10. K.v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45 (1980) p. 494.

    Google Scholar 

  11. C.H. Ahn, J.-M. Triscone, and J. Mannhart, Nature 424 (2004) p. 1015.

    Google Scholar 

  12. D.B. Chrisey and G.K. Hubler, eds., Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).

  13. W. Braun, Applied RHEED (Springer, Berlin, 1999).

    Google Scholar 

  14. G.J.H.M. Rijnders, G. Koster, D.H.A. Blank, and H. Rogalla, Appl. Phys. Lett. 70 (1997) p. 1888.

    Google Scholar 

  15. As an example for Tl-based cuprates, see Y. Shimakawa, Y. Kubo, T. Manako, and H. Igarashi, Phys. Rev. B 40 (1989) p. 11400.

    Google Scholar 

  16. W. Gong, H. Yun, Y.B. Ning, J.E. Greedan, W.R. Datars, and C.V. Stager, J. Solid State Chem. 90 (1991) p. 320.

    Google Scholar 

  17. H.Y. Hwang, A. Ohtomo, N. Nakagawa, D.A. Muller, and J.L. Grazul, Physica E 22 (2004) p. 712.

    Google Scholar 

  18. H.P.R. Frederikse, W.R. Thurber, and W.R. Hosler, Phys. Rev. 134 (1964) p. A442.

    Google Scholar 

  19. J.F. Schooley, W.R. Hosler, and M.L. Cohen, Phys. Rev. Lett. 12 (1964) p. 474.

    Google Scholar 

  20. D.A. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, and H.Y. Hwang, Nature 430 (2004) p. 657.

    Google Scholar 

  21. Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, and Y. Iye, Phys. Rev. Lett. 70 (1993) p. 2126.

    Google Scholar 

  22. A. Ohtomo, D.A. Muller, J.L. Grazul, and H.Y. Hwang, Nature 419 (2002) p. 378.

    Google Scholar 

  23. A. Ohtomo, D.A. Muller, J.L. Grazul, and H.Y. Hwang, Appl. Phys. Lett. 80 (2002) p. 3922.

    Google Scholar 

  24. D.R. Hamann, unpublished.

  25. For an example of delta-doping in silicon, see P.H. Citrin, D.A. Muller, H.-J. Gossmann, R. Vanfleet, and P.A. Northrup, Phys. Rev. Lett. 83 (1999) p. 3234.

    Google Scholar 

  26. S. Okamoto and A.J. Millis, Nature 428 (2004) p. 630.

    Google Scholar 

  27. See the Nobel Lecture by Herbert Kroemer in G. Ekspong, ed., Nobel Lectures, Physics 1996–2000 (World Scientific, Singapore, 2002).

  28. M. Sugiura, K. Uragou, M. Noda, M. Tachiki, and T. Kobayashi, Jpn. J. Appl. Phys. 38 (1999) p. 2675.

    Google Scholar 

  29. H. Tanaka, J. Zhang, and T. Kawai, Phys. Rev. Lett. 88 027204 (2002).

    Google Scholar 

  30. N. Nakagawa, M. Asai, Y. Mukunoki, T. Susaki, and H.Y. Hwang, Appl. Phys. Lett. 86 082504 (2005).

    Google Scholar 

  31. G.A. Baraff, J.A. Appelbaum, and D.R. Hamann, Phys. Rev. Lett. 38 (1977) p. 237.

    Google Scholar 

  32. W.A. Harrison, E.A. Kraut, J.R. Waldrop, and R.W. Grant, Phys. Rev. B 18 (1978) p. 4402.

    Google Scholar 

  33. A. Ohtomo and H.Y. Hwang, Nature 427 (2004) p. 423.

    Google Scholar 

  34. D.O. Klenov, D.G. Schlom, H. Li, and S. Stemmer, Jpn. J. Appl. Phys. 44 (2005) p. L617.

    Google Scholar 

  35. D.-W. Kim, D.-H. Kim, B.-S. Kang, T.W. Noh, D.R. Lee, and K.-B. Lee, Appl. Phys. Lett. 74 (1999) p. 2176.

    Google Scholar 

  36. Y. Mukunoki, N. Nakagawa, T. Susaki, and H.Y. Hwang, Appl. Phys. Lett. 86 171908 (2005).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H.Y. Atomic Control of the Electronic Structure at Complex Oxide Heterointerfaces. MRS Bulletin 31, 28–35 (2006). https://doi.org/10.1557/mrs2006.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.3

Keywords

Navigation