Skip to main content
Log in

Digital Materials Design: Computational Methodologies as a Discovery Tool

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

To cope with the dynamic social and market demands for advanced materials, new research strategies have to be developed that go beyond the commonly accepted trial-and-error approaches. To this end, a computational materials design platform, digital materials design (DMD), has been created based on well-established fundamental laws, powerful computing, and computational technology. DMD based on computer simulation may produce data that identify overlooked materials behaviors, which then may lead to new theory to explain them, and further to the design of real experiments to fabricate and test the materials. In this review, an illustration of computational methods used in DMD will be given, followed by applications based on two case studies: (1) the design of chemical additives, and (2) the realization of p-type ZnO. Similarly, many effective and efficient materials designs have been performed in the using DMD for various industrial applications, which further demonstrate that DMD, and computational modeling in general, is an invaluable tool for materials discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Space shuttle Columbia Web site, http://www.nasa.gov/columbia (accessed November 2006).

  2. World Technology Evaluation Center Reports Online, “Applications of Molecular and Materials Modeling (2002),” http://www.wtec.org/reports.htm (accessed November 2006).

  3. Z. Zhang, P. Wu, L. Lu, and C. Shu, Appl. Phys. Lett. 88 142902 (2006).

    Article  CAS  Google Scholar 

  4. Z.G. Yu, H. Gong, and P. Wu, J. Cryst. Growth 287 (2006) p. 199.

    Article  CAS  Google Scholar 

  5. L. Liu, K.W. Bai, H. Gong, and P. Wu, Chem. Mater. 17 (22) (2005) p. 5529.

    Article  CAS  Google Scholar 

  6. H.M. Jin and P. Wu, Appl. Phys. Lett. 87 181917 (2005).

    Article  CAS  Google Scholar 

  7. L. Liu, K.W. Bai, H. Gong, and P. Wu, Phys. Rev. B. 72 125204 (2005).

    Article  CAS  Google Scholar 

  8. Y. Hu, S.W. Yang, X.T. Chen, D. Lu, P. Wu, and Y.P. Feng, Appl. Phys. Lett. 87 123501 (2005).

    Article  CAS  Google Scholar 

  9. G.Q. Lin, H. Gong, and P. Wu, Phys. Rev. B. 71 085203 (2005).

    Article  CAS  Google Scholar 

  10. The official Gaussian 03 Web site, http://www.gaussian.com (accessed November 2006).

  11. Accelrys Materials Studio, http://www.accelrys.com/products/mstudio/; Accelrys Cerius2, http://www.accelrys.com/products/cerius2/(accessed November 2006).

  12. VASP (Vienna Ab Initio Simulation Package) Web page, http://cms.mpi.univie.ac.at/vasp (accessed November 2006).

  13. PWscf (Plane-Wave Self-Consistent Field) Web page, http://www.pwscf.org (accessed November 2006).

  14. ABINIT Web page, http://www.abinit.org (accessed November 2006).

  15. CPMD consortium Web page, http://www.cpmd.org (accessed November 2006).

  16. K.W. Bai and P. Wu, J. Alloys Compd. 347 (2002) p. 156.

    Article  CAS  Google Scholar 

  17. A.D. Pelton and P. Wu, J. Non-Cryst. Solids 253 (1999) p. 178.

    Article  CAS  Google Scholar 

  18. E. Jak, S. Degterov, P. Wu, P. Hayes, and A.D. Pelton, Metall. Trans. 28 (1997) p. 1011.

    Article  Google Scholar 

  19. FactSage home page, http://www.factsage.com (accessed November 2006).

  20. Thermo-Calc Software Web page, http://www.thermocalc.com (accessed November 2006).

  21. CHEMKIN overview Web page, http://www.ca.sandia.gov/chemkin (accessed November 2006).

  22. OOF: Finite Element Analysis of Microstructures home page, http://www.ctcms.nist.gov/oof (accessed November 2006).

  23. K.L. Heng, H.M. Jin, Y. Li, and P. Wu, J. Mater. Chem. 9 (1999) p. 837.

    Article  CAS  Google Scholar 

  24. P. Wu, K.L. Heng, S.W. Yang, Y.F. Chen, R.S. Mohan, and P.H.C. Lim, Lect. Notes. Artif. Int. 1620 (1999) p. 372.

    Google Scholar 

  25. P.L. Mao, T.F. Liu, K. Kueh, and P. Wu, Comp. Biochem. 28 (2004) p. 245.

    CAS  Google Scholar 

  26. C.H. Li, C.K. Soh, and P. Wu, J. Alloys Compd. 372 (2004) p. 40.

    Article  CAS  Google Scholar 

  27. P. Wu and K.L. Heng, Commun. Chem. Mater. 11 (1999) p. 858.

    Article  CAS  Google Scholar 

  28. P. Wu, Y.Z. Zeng, and C.M. Wang, Biomaterials 25 (2004) p. 1123.

    Article  CAS  Google Scholar 

  29. C.H. Li, Y.H. Thing, Y.Z. Zeng, C.M. Wang, and P. Wu, J. Phys. Chem. Solids 64 (2003) p. 2147.

    Article  CAS  Google Scholar 

  30. MATLAB®, MathWorks Web page, http://www.mathworks.com (accessed November 2006).

  31. J. Rodgers and P. Villars, MRS Bull. XVIII (2) (1993) p. 27.

    Article  Google Scholar 

  32. J.C. Slater, Theory of Alloy Phases (American Society for Metals, Cleveland, OH, 1956).

    Google Scholar 

  33. L.R. Zhao, K. Chen, Q. Yang, J.R. Rodgers, and S.H. Chiou, Surf. Coat. Technol. 200 (2005) p. 1595.

    Article  CAS  Google Scholar 

  34. U. Schubert, Quant. Struct.-Act. Relat. Comb. Sci. 24 (2005) p. 5.

    CAS  Google Scholar 

  35. Q.Y. Wei, X.D. Peng, X.G. Liu, and W.D. Xie, Chin. Sci. Bull. 51 (2006) p. 1.

    Article  Google Scholar 

  36. S. Meguro, T. Ohnishi, M. Lippmaa, and H. Koinuma, Meas. Sci. Technol. 16 (2005) p. 309.

    Article  CAS  Google Scholar 

  37. J.R.G. Evans, M.J. Edirisinghe, P.V. Coveney, and J. Eames, J. Eur. Ceram. Soc. 21 (2001) p. 2291.

    Article  CAS  Google Scholar 

  38. D. Morgan, G. Ceder, and S. Curtarolo, Meas. Sci. Technol. 16 (2005) p. 296.

    Article  CAS  Google Scholar 

  39. M.L. Wang, X.Q. Hu, D.N. Beratan, and W.T. Yang, J. Am. Chem. Soc. 128 (2006) p. 3228.

    Article  CAS  Google Scholar 

  40. P. Wu and C.H. Li, Calphad 27 (2003) p. 201.

    Article  CAS  Google Scholar 

  41. Y.Z. Zeng, S.J. Chua, and P. Wu, Chem. Mater. 14 (2002) p. 2989.

    Article  CAS  Google Scholar 

  42. K.L. Heng, S.J. Chua, and P. Wu, Chem. Mater. 12 (2000) p. 1648.

    Article  CAS  Google Scholar 

  43. C.H. Li and P. Wu, Chem. Mater. 14 (2002) p. 4833.

    Article  CAS  Google Scholar 

  44. C.H. Li and P. Wu, Chem. Mater. 13 (2001) p. 4642.

    Article  CAS  Google Scholar 

  45. J.J. Sebisty and R.H. Palmer, Proc. 7th Int. Conf. on Hot Dip Galvanizing Interlaken (1964) p. 235.

  46. P. Wu, H.M. Jin, and Y. Li, Chem. Mater. 11 (1999) p. 3166.

    Article  CAS  Google Scholar 

  47. S.A. Rice and N.H. Nachtrieb, J. Chem. Phys. 31 (1959) p. 139.

    Article  CAS  Google Scholar 

  48. H.M. Jin, Y. Li, H.L. Liu, and P. Wu, Chem. Mater. 12 (2000) p. 1879.

    Article  CAS  Google Scholar 

  49. P. Wu, H.M. Jin, and H.L. Liu, Chem. Mater. 14 (2002) p. 832.

    Article  CAS  Google Scholar 

  50. W.H. Zhu, H.M. Jin, P Wu, and H.L. Liu, Phys. Rev. B. 70 165419 (2004).

    Article  CAS  Google Scholar 

  51. L. Dai, S.W. Yang, X.T. Chen, P. Wu, and V.B.C. Tan, Appl. Phys. Lett. 87 032108 (2005).

    Article  CAS  Google Scholar 

  52. S.W. Yang, L. Dai, X.T. Chen, P. Wu, and V.B.C. Tan, Appl. Phys. Lett. 88 112902 (2006).

    Article  CAS  Google Scholar 

  53. W.H. Zhu, H.M. Jin, P. Wu, and H.L. Liu, Chem. Mater. 16 (2004) p. 5567.

    Article  CAS  Google Scholar 

  54. J.M. Toguri and J. Wang, Study on Reactions Induced by Minor Chemical Additions, final report to the Singapore–Ontario Joint Research Program (University of Toronto, Toronto, Canada, February 2002).

    Google Scholar 

  55. Z.G. Yu, H. Gong, and P. Wu, Chem. Mater. 17 (2005) p. 852.

    Article  CAS  Google Scholar 

  56. Z.G. Yu, H. Gong, and P. Wu, Appl. Phys. Lett. 86 212105 (2005).

    Article  CAS  Google Scholar 

  57. Z.G. Yu, H. Gong, and P. Wu, Appl. Phys. Lett. 88 132114 (2006).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, P. Digital Materials Design: Computational Methodologies as a Discovery Tool. MRS Bulletin 31, 995–998 (2006). https://doi.org/10.1557/mrs2006.227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.227

Keywords

Navigation