Skip to main content
Log in

Materials Matter in Microfluidic Devices

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

As more micro- and nanofluidic methodologies are developed for a growing number of diverse applications, it becomes increasingly apparent that the choice of substrate material can have a profound effect on the eventual performance of a device. This is due mostly to the high surface-to-volume ratio that exists within such small structures. In addition to the obvious limitations related to the choice of solvent, operating temperatures, and pressure, the method of fluidic pumping—in particular, an electrokinetics-based methodology using a combination of electro-osmotic and electrophoresis flows—can further complicate material choice. These factors, however, are only part of the problem; once chemicals or biological materials (e.g., proteins or cells) are introduced into a microfluidic system, surface characteristics will have a profound influence on the activity of such components, which will subsequently influence their performance. This article reviews the common types of materials that are currently used to fabricate microfluidic devices and considers how these materials may influence the overall performance associated with chemical and biological processing. Consideration will also be given to the selection of materials and surface modifications that can aid in exploiting the high surface properties to enhance process performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Manz, J.C. Fettinger, E. Verpoorte, H. Ludi, H.M. Widmer, and D.J. Harrison, Trends Anal. Chem. 10 (1991) p. 144.

    Google Scholar 

  2. A. Manz and H. Becker, Eds., Microsystem Technology in Chemistry and Life Sciences (Springer, Berlin, 1998).

  3. K.F. Jensen, Chem. Eng. Sci. 56 (2001) p. 293.

    Google Scholar 

  4. P.D.I. Fletcher, S.J. Haswell, E. Pombo-Villar, B.H. Warrington, P. Watts, SY.F. Wong, and X. Zhang, Tetrahedron 58 (2002) p. 4735.

    Google Scholar 

  5. T. Laurell, J. Nilsson, K. Jensen, D.J. Harrison, and J.P. Kutter, Eds., 8th Int. Conf. Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2004) (Malmö, Sweden, September 26–30, 2004).

  6. C. Wiles, P. Watts, and S.J. Haswell, Tetrahedron 61 (2005) p. 5209.

    Google Scholar 

  7. P. He, S.J. Haswell, and P.D.I. Fletcher, Lab Chip 4 (2004) p. 38.

    Google Scholar 

  8. C. Wiles, P. Watts, S.J. Haswell, and E. Pombo-Villar, Lab Chip 4 (2004) p. 171.

    Google Scholar 

  9. S.C. Terry, J.H. Jerman, and J.B. Angell, IEEE Trans. Electron. Devices ED-26 (1979) p. 1880.

    Google Scholar 

  10. T. McCreedy, Anal. Chim. Acta 427 (2001) p. 39.

    Google Scholar 

  11. W. Ehrfeld, V. Hessel, and H. Löwe, Microreactors: New Technology for Modern Chemistry, (Wiley-VCH, Weinheim, Germany, 2000) p. 11.

    Google Scholar 

  12. E. Lagally and R.A. Mathies, J. Phys. D Appl. Phys. 37 (2004) p. R245.

    Google Scholar 

  13. A.R. Grayson, A. Johnson, N. Flynn, Y. Li, M. Cima, and R. Langer, Proc. IEEE 92 (2004) p. 6.

    Google Scholar 

  14. C.H. Ahn, J.W. Choi, G. Beaucage, J.H. Nevin, J.B. Lee, A. Puntambekar, and J.Y. Lee, Proc. IEEE 92 (2004) p. 154.

    Google Scholar 

  15. P.D.I. Fletcher, S.J. Haswell, and X. Zhang, Lab Chip 1 (2001) p. 115.

    Google Scholar 

  16. P.D.I. Fletcher, S.J. Haswell, and X. Zhang, Lab Chip 2 (2002) p. 102.

    Google Scholar 

  17. J.Th.G. Overbeek, in Colloid Science, Vol. 1, Chap. V, edited by H.R. Kruyt (Elsevier, Amsterdam, 1952) p. 195.

    Google Scholar 

  18. C.L. Rice and R. Whitehead, J. Phys. Chem. 69 (1965) p. 4017.

    Google Scholar 

  19. R.J. Hunter, Zeta Potential in Colloid Science (Academic Press, London, 1981).

    Google Scholar 

  20. P.H. Paul, M.G. Garguilo, and D.J. Rakestraw, Anal. Chem. 70 (1998) p. 2459.

    Google Scholar 

  21. B.J. Harmon, I. Leesong, and F.E. Regnier, Anal. Chem. 66 (1994) p. 3797.

    Google Scholar 

  22. D.H. Patterson, B.J. Harmon, and F.E. Regnier, J. Chromatogr. A 732 (1996) p. 119.

    Google Scholar 

  23. W.L.W. Hau, D.W. Trau, N.J. Sucher, M. Wong, and Y. Zohar, J. Micromech. Microeng. 13 (2003) p. 272.

    Google Scholar 

  24. S.W. Hu, X. Ren, M. Bachman, C.E. Sims, G.P. Li, and N.L. Allbritton, Anal. Chem. 74 (2002) p. 4117.

    Google Scholar 

  25. S.D. Gillmor, B.J. Larson, J.M. Braun, C.E. Mason, L.E. Cruz-Barba, F. Denes, and M.G. Lagally, in Proc. 2nd Annu. IEEE-EMBS Spec. Top. Conf. on Microtechnologies in Medicine and Biology (Madison, Wis., 2002) p. 51.

  26. J.L. Fritz and M.J. Owen, J. Adhesives 54 (1995) p. 33.

    Google Scholar 

  27. K. Handique, D.T. Burke, C.H. Mastrangelo, and M.A. Burns, Anal. Chem. 72 (2000) p. 4100.

    Google Scholar 

  28. T.W. Schneider, H.M. Schessler, K.M. Shaffer, J.M. Dumm, and L.A. Younce, Biomed. Microdev. 3 (4) (2001) p. 315.

    Google Scholar 

  29. S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A. Kenis, R.F. Ismagilov, and G.M. Whitesides, Proc. Natl. Acad. Sci. USA 96 (1999) p. 5545.

    Google Scholar 

  30. J.-Y. Shiu and P.L. Chen, Adv. Mater. 17 (2005) p. 1866.

    Google Scholar 

  31. Z.L. Zhang, C. Crozatier, M.L. Berre, and Y. Chen, Microelectron. Eng. 78 (2005) p. 556.

    Google Scholar 

  32. N. Nikbin and P. Watts, Org. Process Res. Dev. 8 (2004) p. 942.

    Google Scholar 

  33. F. Svec, LC-GC Europe 18 (2004) p. 17.

    Google Scholar 

  34. D.S. Peterson, T. Rohr, F.K. Svec, and J.M.J. Frechet, Anal. Chem. 75 (2003) p. 5328.

    Google Scholar 

  35. Y.N. Yang, C. Li, J. Kameoka, K.H. Leeb, and H.G. Craighead, Lab Chip 5 (2005) p. 869.

    Google Scholar 

  36. M. Takagi, T. Maki, M. Miyahara, and K. Mae, Chem. Eng. J. 101 (2004) p. 269.

    Google Scholar 

  37. M.S. Munson, M.S. Hasenbank, E. Fu, and P. Yager, Lab Chip 4 (2004) p. 438.

    Google Scholar 

  38. M.S. Munson, K.R. Hawkins, M.S. Hasenbank, and P. Yager, Lab Chip 5 (2005) p. 856.

    Google Scholar 

  39. M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla., 1997).

    Google Scholar 

  40. T. McCreedy, Trends Anal. Chem. 19 (2000) p. 396.

    Google Scholar 

  41. B.R.M. Al-Gailani and T. McCreedy, Chem. Commun. (2003) p. 120.

  42. P.D.I. Fletcher, S.J. Haswell, P. Watts, and X. Zhang, Dekker Encyclopedia of Nanoscience and Nanotechnology (Marcel-Dekker, New York, 2004) p. 1547.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Haswell, S.J. Materials Matter in Microfluidic Devices. MRS Bulletin 31, 95–99 (2006). https://doi.org/10.1557/mrs2006.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.22

Keywords

Navigation