Skip to main content

Advertisement

Log in

Polymeric Facilitated Transport Membranes for Hydrogen Purification

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The most widely used method of hydrogen production, steam methane reforming, yields a product stream consisting mainly of hydrogen (H2) and carbon dioxide (CO2). Purification of this product is currently accomplished using amine-based acid gas scrubbers or pressure swing adsorption technology. Membranes are well suited to bulk CO2 removal and offer a viable alternative to these established technologies. This review considers one type of such membranes, polymeric facilitated transport membranes. These membranes selectively permeate CO2 by means of a reversible reaction between the gas and the membrane material. In addition, the membrane provides a barrier to H2 permeation. The result is removal of the CO2 contaminant and recovery of the H2 product at high pressure, eliminating the need for recompression prior to use or storage. A wide range of polymeric materials have been investigated, including ion-exchange resins, hydrophilic polymers blended with CO2-reactive salts, polyelectrolytes, fixed-site carrier polymers, and biomimetic materials. This review provides a description of the reaction chemistry of facilitated transport, a summary of membrane permselective properties, and suggestions for future research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gunardson, Industrial Gases in Petrochemical Processing (Marcel Dekker, New York, 1998).

    Google Scholar 

  2. J.C. Molburg and R.D. Doctor, “Hydrogen from Steam-Methane Reforming with CO2 Capture,” presented at the 20th Annu. Int. Pittsburgh Coal Conf. (Pittsburgh, PA, September 15–19, 2003).

  3. R. Bredesen, K. Jordal, and O. Bolland, Chem. Eng. Proc. 43 (2004) p. 1129.

    Google Scholar 

  4. E.L. Cussler, in Polymeric Gas Separation Membranes, Ch. 6, edited by D.R. Paul and Y.P. Yampol’skii (CRC Press, Boca Raton, FL, 1994) p. 280.

    Google Scholar 

  5. O.H. LeBlanc, W.J. Ward, S.L. Matson, and S.G. Kimura, J. Membr. Sci. 6 (1980) p. 339.

    Google Scholar 

  6. S.G. Kimura, W.J. Ward, and S.L. Matson, “Facilitated separation of a select gas through an ion-exchange membrane,” U.S. Patent No. 4,318,714 (March 9, 1982).

  7. J.D. Way and R.D. Noble, in Membrane Handbook, edited by W.S.W. Ho and K.K. Sirkar (Van Nostrand Reinhold, New York, 1992) p. 833.

    Google Scholar 

  8. J.D. Way, R.D. Noble, D.L. Reed, G.M. Ginley, and L.A. Jarr, AIChE J. 33 (1987) p. 480.

    Google Scholar 

  9. J.D. Way and R.L. Hapke, Proc. ACS Fuel Chem. Div. Meet. 33 (1988) p. 283.

    Google Scholar 

  10. J.J. Pelligrino, R. Nassimbene, M. Ko, and R.D. Noble, in Proc. 9th Annu. Gasification & Gas Stream Cleanup Systems Contractors Rev. Meet., Vol. I, edited by R.A. Johnson and T.P. Dorchak (1989) p. 211.

  11. R.D. Noble, J.J. Pellegrino, E. Grosgogeat, D. Sperry, and J.D. Way, Sep. Sci. Technol. 23 (1988) p. 1595.

    Google Scholar 

  12. D. Langevin, M. Pinoche, E. Selegny, M. Metayer, and R. Roux, J. Membr. Sci. 82 (1993) p. 51.

    Google Scholar 

  13. M. Kim, Y. Park, K. Youm, and K. Lee, J. Membr. Sci. 245 (2004) p. 79.

    Google Scholar 

  14. H. Matsuyama, M. Teramoto, and K. Iwai, J. Membr. Sci. 93 (1994) p. 237.

    Google Scholar 

  15. H. Matsuyama, M. Teramoto, H. Sakakura, and K. Iwai, J. Membr. Sci. 117 (1996) p. 251.

    Google Scholar 

  16. H. Matsuyama, M. Teramoto, K. Matsui, and Y. Kitaura, J. Appl. Polym. Sci. 81 (2001) p. 936.

    Google Scholar 

  17. W.S.W. Ho, “Membranes comprising salts of amino acids in hydrophilic polymers,” U.S. Patent No. 5,611,843 (March 18, 1997).

  18. W.S.W. Ho, “Membranes comprising amino acid salts in polyamine polymers and blends,” U.S. Patent No. 6,099,621 (August 8, 2000).

  19. W.S.W. Ho, “CO2-selective membrane process and system for reforming a fuel to hydrogen for a fuel cell,” U.S. Patent No. 6,579,331 (June 17, 2003).

  20. R. Quinn, D.V. Laciak, and G.P. Pez, “Process for separating acid gases from gaseous mixtures utilizing composite membranes formed from salt-polymer blends,” U.S. Patent No. 6,315,968 (November 13, 2001).

  21. R. Quinn, D.V. Laciak, J.B. Appleby, and G.P. Pez, “Polyelectrolyte membranes for the separation of acid gases,” U.S. Patent No. 5,336,298 (August 9, 1994).

  22. R. Quinn and D.V. Laciak, J. Membr. Sci. 131 (1997) p. 49.

    Google Scholar 

  23. R. Quinn, J. Membr. Sci. 139 (1998) p. 97.

    Google Scholar 

  24. R. Quinn, D.V. Laciak, and G.P. Pez, J. Membr. Sci. 131 (1997) p. 61.

    Google Scholar 

  25. H. Matsuyama, M. Teramoto, and H. Sakakura, J. Membr. Sci. 114 (1996) p. 193.

    Google Scholar 

  26. M. Yoshikawa, K. Fujimoto, H. Kinugawa, T. Kitao, Y. Kamiya, and N. Ogata, J. Appl. Polym. Sci. 58 (1995) p. 1771.

    Google Scholar 

  27. Y. Zhang, Z. Wang, and S. Wang, J. Appl. Polym. Sci. 86 (2002) p. 2222.

    Google Scholar 

  28. Y. Zhang, Z. Wang, and S. Wang, Chem. Lett. (2002) p. 430.

  29. H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, and M. Teramoto, J. Membr. Sci. 163 (1999) p. 221.

    Google Scholar 

  30. T.J. Kim, B. Li, and M.B. Hägg, J. Polym. Sci. B 42 (2004) p. 4326.

    Google Scholar 

  31. M.B. Hägg, T.J. Kim, and B. Li, “Membrane for separating CO2 and process for the production thereof,” WO Patent No. 2005089907 (September 29, 2005).

  32. N.M. Kocherginsky, I.S. Osak, L.E. Bromberg, V.A. Karyagin, and Y.S. Moshkovsky, J. Membr. Sci. 30 (1987) p. 39.

    Google Scholar 

  33. N.M. Kocherginsky, L.E. Bromberg, and G.S. Leskin, translated from Zhurnal Fizichesko Kimii 61 (1987) p. 1609.

    Google Scholar 

  34. M.C. Trachtenberg, “Enzyme systems for gas processing,” U.S. Patent No. 6,143,556 (November 7, 2000).

  35. M.C. Trachtenberg, presented at Conf. Adv. Membr. Technol. (Engineering Foundation Conference, Barga, Italy, 2001).

    Google Scholar 

  36. M. Mulder, Basic Principles of Membrane Technology, 2nd ed. (Kluwer Academic Publishers, Dordrecht, 1996) p. 340.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hägg, MB., Quinn, R. Polymeric Facilitated Transport Membranes for Hydrogen Purification. MRS Bulletin 31, 750–755 (2006). https://doi.org/10.1557/mrs2006.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.188

Keywords

Navigation