Skip to main content
Log in

Designing New Structural Materials Using Density Functional Theory: The Example of Gum MetalTM

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

As an example of the application of density functional theory (DFT) to materials design, we describe our use of ab initio calculations based on DFT to develop a new structural material: Gum MetalTM, a novel, multifunctional titanium alloy with a low Young’s modulus and high strength. We first carried out calculations on elastic constants in several Ti-X binary alloys to obtain the basic principles on which to determine the compositional limitations of an alloy with a low modulus. The elastic properties in the Ti-based binary alloys were successfully estimated by ab initio calculations, with the result implying absolute elastic softening at the valence electron number per atom, e/a, of 4.24. We also studied the effects of additional elements experimentally and, by comparison with electronic-structure calculations, found two more key parameters (approximately representing bond strength and electronegativity), critical for the design of practical elastic properties. We discuss dislocation-free plastic deformation of Gum Metal and its relation to the absolute elastic softening at an e/a value of 4.24, and finally we discuss the prospects for future applications of DFT in structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Söderlind, O. Eriksson, J.M. Wills, and A.M. Boring, Phys. Rev. B 48 (1993) p. 5844.

    Google Scholar 

  2. P.A. Korzhavyi, A.V. Ruban, S.I. Simak, and Yu.Kh. Vekilov, Phys. Rev. B 49 (1994) p. 14229.

    Google Scholar 

  3. V.P. Antropov and B.N. Harmon, Phys. Rev. B 51 (1995) p. 1918.

    Google Scholar 

  4. G.Y. Guo and H.H. Wang, Phys. Rev. B 62 (2000) p. 5136.

    Google Scholar 

  5. P.T. Jochym and K. Parlinski, Phys. Rev. B 65 024106 (2001).

    Google Scholar 

  6. T. Uesugi, M. Kohyama, M. Kohzu, and K. Higashi, Mater. Trans. 42 (2001) p. 1167.

    CAS  Google Scholar 

  7. L. Vitos, P.A. Korzhavyi, and B. Johansson, Phys. Rev. Lett. 88 155501 (2002).

    CAS  Google Scholar 

  8. B. Magyari-Köpe, G. Grimvall, and L. Vitos, Phys. Rev. B 66 064210 (2002).

    Google Scholar 

  9. Y. Lee and B.N. Harmon, J. Alloys Compd. 338 (2002) p. 242.

    CAS  Google Scholar 

  10. K. Chen and L.R. Zhao, J. Appl. Phys. 93 (2003) p. 2414.

    CAS  Google Scholar 

  11. B. Johansson, L. Vitos, and P.A. Korzhavyi, Solid State Sci. 5 (2003) p. 931.

    CAS  Google Scholar 

  12. T. Uesugi, Y. Takigawa, and K. Higashi, Mater. Trans. 46 (2005) p. 1117.

    CAS  Google Scholar 

  13. O.N. Mryasov and A.J. Freeman, Mater. Sci. Eng. A 260 (1999) p. 80.

    Google Scholar 

  14. D. Roundy, C.R. Krenn, M.L. Cohen, and J.W. Morris Jr., Phys. Rev. Lett. 82 (1999) p. 2713.

    CAS  Google Scholar 

  15. J.W. Morris Jr., C.R. Krenn, D. Roundy, and M.L. Cohen, Mater. Sci. Eng. A 309–310 (2001) p. 121.

    Google Scholar 

  16. C.R. Krenn, D. Roundy, J.W. Morris Jr. and M.L. Cohen, Mater. Sci. Eng. A A319-321 (2001) p. 111.

    Google Scholar 

  17. W. Luo, D. Roundy, M.L. Cohen, and J.W. Morris Jr., Phys. Rev. B 66 094110 (2002).

    Google Scholar 

  18. D.M. Clatterbuck, D.C. Chrzan, and J.W. Morris Jr., Acta Mater. 51 (2003) p. 2271.

    CAS  Google Scholar 

  19. Y. Kawazoe, Mater. Design 22 (2001) p. 61.

    CAS  Google Scholar 

  20. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, Science 300 (2003) p. 464.

    CAS  Google Scholar 

  21. H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito, Phys Rev B 70 174113 (2004).

    Google Scholar 

  22. S. Kuramoto, H. Ikehata, N. Nagasako, J.H. Hwang, T. Furuta, K. Nishino, and T. Saito, TMS Lett. 2 (2005) p. 5.

    CAS  Google Scholar 

  23. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928) p. 716.

    Google Scholar 

  24. A. Reuss and Z. Angew, Math. Mech. 9 (1929) p. 49.

    CAS  Google Scholar 

  25. R. Hill, Proc. Phys. Soc., London, Sect. A 65 (1952) p. 349.

    Google Scholar 

  26. G. Grimvall, Thermophysical Properties of Materials (North-Holland, Amsterdam, 1999).

  27. M. Morinaga, N. Yukawa, and H. Adachi, Tetsu To Hagane 72 (1986) p. 555.

    CAS  Google Scholar 

  28. S. Kuramoto, T. Furuta, J.H. Hwang, K. Nishino, and T. Saito, J. Jpn. Inst. Metals 69 (2005) p. 953.

    CAS  Google Scholar 

  29. S. Kuramoto, T. Furuta, J.H. Hwang, K. Nishino, and T. Saito, Metall. Mater. Trans. A 37A (2006) p. 657.

    Google Scholar 

  30. P. Souvatzis, M.I. Katsnelson, S. Simak, R. Ahuja, and O. Eriksson, Phys. Rev. B 70 012201 (2004).

    Google Scholar 

  31. O.N. Mryasov, Y.N. Gornostyrev, and A.J. Freeman, Phys. Rev. B 58 (1998) p. 11927.

    Google Scholar 

  32. G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxiras, Mat. Sci. Eng. A309–310 (2001) p. 142.

    Google Scholar 

  33. J.-A Yan, C.-Y. Wang, and S.-Y. Wang, Phys. Rev. B 70 174105 (2004).

    Google Scholar 

  34. V.G. Gavriljuk, V.N. Shivanyuk, and B.D. Shanina, Acta Mater. 53 (2005) p. 5017.

    CAS  Google Scholar 

  35. K. Terakura, T. Oguchi, T. Mohri, and K. Watanabe, Phys. Rev. B 35 (1987) p. 2169.

    Google Scholar 

  36. L. Kaufman, P.E.A. Turchi, W. Huang, and Z.-K. Liu, Calphad 25 (2001) p. 419.

    CAS  Google Scholar 

  37. H. Ohtani, Y. Takeshita, and M. Hasebe, Mater. Trans. 45 (2004) p. 1499.

    CAS  Google Scholar 

  38. T. Tokunaga, K. Hashima, H. Ohtani, and M. Hasebe, Mater. Trans. 45 (2004) p. 1507.

    CAS  Google Scholar 

  39. P.E.A. Turchi, V. Drchal, J. Kudrnovsky, C. Colinet, L. Kaufman, and Z.-K. Liu, Phys. Rev. B 71 094206 (2005).

    Google Scholar 

  40. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria, 2002).

    Google Scholar 

  41. PWscf (Plane-Wave Self-Consistent Field) home page, http://www.pwscf.org/ (accessed August 2006).

  42. G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) p. 11169.

    Google Scholar 

  43. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D.C. Allan, Comput. Mater. Sci. 25 (2002) p. 478. The ABINIT code is a common project of the Université Catholique de Louvain, Corning Inc., and other contributors; see http://www.abinit.org (accessed August 2006).

    Google Scholar 

  44. C. Bercegeay and S. Bernard, Phys. Rev. B 72 214101 (2005).

    Google Scholar 

  45. T. Furuta, S. Kuramoto, J.H. Hwang, K. Nishino, and T. Saito, Mater. Trans. 46 (2005) p. 3001.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikehata, H., Nagasako, N., Kuramoto, S. et al. Designing New Structural Materials Using Density Functional Theory: The Example of Gum MetalTM. MRS Bulletin 31, 688–692 (2006). https://doi.org/10.1557/mrs2006.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.178

Keywords

Navigation