Skip to main content

Advertisement

Log in

Realistic Modeling of Nanostructures Using Density Functional Theory

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The development of materials and devices at the nanoscale presents great challenges, from synthesis to assembly to characterization. Often, progress can only be made by complementing experimental work with electronic-structure modeling, harnessing the efficiency, predictive power, and atomic resolution of density functional theory to describe molecular architectures exactly at those scales (hundreds or thousands of atoms) where the most promising and undiscovered properties are to be engineered. Some of the next-generation technologies that will benefit first from first-principles simulations encompass areas as diverse as energy and information storage and retrieval, detection and sensing of biological and foreign contaminants, nanostructured catalysts, nanomechanical devices, hybrid organic-inorganic and biologically inspired materials, and novel computer technologies based on integrated optical and electronic platforms. This article reviews some of the recent successes and insights gained by electronic-structure modeling, ranging from carbon nanotubes to semiconducting nanoparticles, quantum dots, and self-assembled monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Car and M. Parrinello, Phys. Rev. Lett. 55 (1985) p. 2471.

    CAS  Google Scholar 

  2. D. Vanderbilt, Phys. Rev. B 41 (1990) p. 7892.

    Google Scholar 

  3. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64 (1992) p. 1045.

    CAS  Google Scholar 

  4. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6 (1996) p. 15.

    CAS  Google Scholar 

  5. G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) p. 11169.

    Google Scholar 

  6. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.Y. Raty, and D.C. Allan, Comput. Mater. Sci. 25 (2002) p. 478.

    Google Scholar 

  7. S. Scandolo, P. Giannozzi, C. Cavazzoni, S. de Gironcoli, A. Pasquarello, and S. Baroni, Z. Kristallogr. 220 (2005) p. 574.

    CAS  Google Scholar 

  8. C. Adamo, M. Ernzerhof, and G.E. Scuseria, J. Chem. Phys. 112 (2000) p. 2643.

    CAS  Google Scholar 

  9. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118 (2003) p. 8207.

    CAS  Google Scholar 

  10. S. Curtarolo, D. Morgan, K. Persson, and G. Ceder, Phys. Rev. Lett. 91 135503 (2003).

    Google Scholar 

  11. A. Franceschetti and A. Zunger, Nature 402 (1999) p. 60.

    CAS  Google Scholar 

  12. A.M. George, J. Iniguez, and L. Bellaiche, Nature 413 (2001) p. 54.

    CAS  Google Scholar 

  13. T. Wang, N. Moll, K.J. Cho, and D. Joannopoulos, Phys. Rev. Lett. 82 (1999) p. 3304.

    CAS  Google Scholar 

  14. M. Fornari and D.J. Singh, Phys. Rev. B 59 (1999) p. 9722.

    Google Scholar 

  15. D.A. Scherlis and N. Marzari, J. Am. Chem. Soc. 127 (2005) p. 3207.

    CAS  Google Scholar 

  16. S.M. Nakhmanson, K.M. Rabe, and D. Vanderbilt, Phys. Rev. B 73 060101 (2006).

    Google Scholar 

  17. J.B. Neaton and K.M. Rabe, Appl. Phys. Lett. 82 (2003) p. 1586.

    CAS  Google Scholar 

  18. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D.C. Ralph, Nature 417 (2002) p. 722.

    CAS  Google Scholar 

  19. J.L. Fattebert and F. Gygi, Computer Phys. Commun. 162 (2004) p. 24.

    CAS  Google Scholar 

  20. D. Alfe, Phys. Rev. B 68 064423 (2003).

    Google Scholar 

  21. A.A. Mostofi, C.K. Skylaris, P.D. Haynes, and M.C. Payne, Computer Phys. Commun. 147 (2002) p. 788.

    CAS  Google Scholar 

  22. P. Ordejon, Phys. Status Solidi B 217 (2000) p. 335.

    Google Scholar 

  23. S. Goedecker, Rev. Mod. Phys. 71 (1999) p. 1085.

    CAS  Google Scholar 

  24. A.J. Williamson, R.Q. Hood, and J.C. Grossman, Phys. Rev. Lett. 87 246406 (2001).

    CAS  Google Scholar 

  25. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matt. 14 (2002) p. 2745.

    CAS  Google Scholar 

  26. D.R. Bowler, T. Miyazaki, and M.J. Gillan, J. Phys.: Condens. Matt. 14 (2002) p. 2781.

    CAS  Google Scholar 

  27. C.K. Skylaris, P.D. Haynes, A.A. Mostofi, and M.C. Payne, J. Chem. Phys. 122 084119 (2005).

    Google Scholar 

  28. C.K. Skylaris, A.A. Mostofi, P.D. Haynes, O. Dieguez, and M.C. Payne, Phys. Rev. B 66 035119 (2002).

    Google Scholar 

  29. D. Sanchez-Portal, P. Ordejon, E. Artacho, and J.M. Soler, Int. J. Quantum Chem. 65 (1997) p. 453.

    Google Scholar 

  30. M. Challacombe, J. Chem. Phys. 110 (1999) p. 2332.

    CAS  Google Scholar 

  31. A. Franceschetti, L.W. Wang, G. Bester, and A. Zunger, Nano Lett. 6 (2006) p. 1069.

    CAS  Google Scholar 

  32. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408 (2000) p. 440.

    CAS  Google Scholar 

  33. A. Puzder, A.J. Williamson, J.C. Grossman, and G. Galli, Phys. Rev. Lett. 88 097401 (2002).

    Google Scholar 

  34. A.J. Williamson, J.C. Grossman, R.Q. Hood, A. Puzder, and G. Galli, Phys. Rev. Lett. 89 196803 (2002).

    Google Scholar 

  35. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82 (1999) p. 197.

    CAS  Google Scholar 

  36. I. Vasiliev, S. Ogut, and J.R. Chelikowsky, Phys. Rev. Lett. 86 (2001) p. 1813.

    CAS  Google Scholar 

  37. I. Vasiliev, S. Ogut, and J.R. Chelikowsky, Phys. Rev. B 65 115416 (2002).

    Google Scholar 

  38. F.A. Reboredo and A.J. Williamson, Phys. Rev. B 71 121105 (2005).

    Google Scholar 

  39. W.M.C. Foulkes, L. Mitas, R.J. Needs, and G. Rajagopal, Rev. Modern Phys. 73 (2001) p. 33.

    CAS  Google Scholar 

  40. G. Onida, L. Reining, and A. Rubio, Rev. Modern Phys. 74 (2002) p. 601.

    CAS  Google Scholar 

  41. L. Dal Negro, J.H. Yi, L.C. Kimerling, S. Hamel, A.J. Williamson, and G. Galli, Appl. Phys. Lett. 88 183103 (2006).

    Google Scholar 

  42. S. Frank, P. Poncharal, Z.L. Wang, and W.A. de Heer, Science 280 (1998) p. 1744.

    CAS  Google Scholar 

  43. J. Maultzsch, S. Reich, C. Thomsen, and H. Requardt, Phys. Rev. Lett. 92 075501 (2004).

    CAS  Google Scholar 

  44. S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, and J. Robertson, Phys. Rev. Lett. 93 185503 (2004).

    CAS  Google Scholar 

  45. Z. Yao, C.L. Kane, and C. Dekker, Phys. Rev. Lett. 84 (2000) p. 2941.

    CAS  Google Scholar 

  46. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H.J. Dai, Phys. Rev. Lett. 92 106804 (2004).

    Google Scholar 

  47. M. Lazzeri, S. Piscanec, F. Mauri, A.C. Ferrari, and J. Robertson, Phys. Rev. Lett. 95 (2005).

  48. A. Debernardi, S. Baroni, and E. Molinari, Phys. Rev. Lett. 75 (1995) p. 1819.

    CAS  Google Scholar 

  49. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, Phys. Rev. Lett. 95 187403 (2005).

    Google Scholar 

  50. E. Pop, D. Mann, J. Cao, Q. Wang, K. Good-son, and H.J. Dai, Phys. Rev. Lett. 95 155505 (2005).

    Google Scholar 

  51. N.D. Lang, Phys. Rev. B 52 (1995) p. 5335.

    Google Scholar 

  52. M. Di Ventra, S.T. Pantelides, and N.D. Lang, Phys. Rev. Lett. 84 (2000) p. 979.

    Google Scholar 

  53. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63 245407 (2001).

    Google Scholar 

  54. Y.Q. Xue, S. Datta, and M.A. Ratner, Chem. Phys. 281 (2002) p. 151.

    CAS  Google Scholar 

  55. K. Stokbro, J. Taylor, M. Brandbyge, and P. Ordejon, in Molecular Electronics III, Vol. 1006 (2003) p. 212.

    CAS  Google Scholar 

  56. N. Marzari and D. Vanderbilt, Phys. Rev. B 56 (1997) p. 12847.

    Google Scholar 

  57. Y.S. Lee, M.B. Nardelli, and N. Marzari, Phys. Rev. Lett. 95 076804 (2005).

    Google Scholar 

  58. A. Calzolari, N. Marzari, I. Souza, and M.B. Nardelli, Phys. Rev. Lett. 69 035108 (2004).

    Google Scholar 

  59. K.S. Thygesen and K.W. Jacobsen, Chem. Phys. 319 (2005) p. 111.

    CAS  Google Scholar 

  60. S. Latil, S. Roche, and J.C. Charlier, Nano Lett. 5 (2005) p. 2216.

    CAS  Google Scholar 

  61. A.H. Nevidomskyy, G. Csanyi, and M.C. Payne, Phys. Rev. Lett. 91 15502 (2003).

    Google Scholar 

  62. C. Adessi, S. Roche, and X. Blase, Phys. Rev. B 73 125414 (2006).

    Google Scholar 

  63. H.J. Choi, J. Ihm, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 84 (2000) p. 2917.

    CAS  Google Scholar 

  64. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Phys. Rev. Lett. 92 077402 (2004).

    Google Scholar 

  65. C.D. Spataru, S. Ismail-Beigi, R.B. Capaz, and S.G. Louie, Phys. Rev. Lett. 95 247402 (2005).

    Google Scholar 

  66. C.H. Park, C.D. Spataru, and S.G. Louie, Phys. Rev. Lett. 96 126105 (2006).

    Google Scholar 

  67. J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M.S. Strano, C. Thomsen, and C. Lienau, Phys. Rev. B 72 241402 (2005).

    Google Scholar 

  68. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour, Science 278 (1997) p. 252.

    CAS  Google Scholar 

  69. W.C. Lu, V. Meunier, and J. Bernholc, Phys. Rev. Lett. 95 206805 (2005).

    Google Scholar 

  70. V. Meunier, M.B. Nardelli, J. Bernholc, T. Zacharia, and J.C. Charlier, Appl. Phys. Lett. 81 (2002) p. 5234.

    CAS  Google Scholar 

  71. M. Di Ventra, Y.C. Chen, and T.N. Todorov, Phys. Rev. Lett. 92 176803 (2004).

    Google Scholar 

  72. K. Burke, R. Car, and R. Gebauer, Phys. Rev. Lett. 94 146803 (2005).

    Google Scholar 

  73. W. Kohn, Y. Meir, and D.E. Makarov, Phys. Rev. Lett. 80 (1998) p. 4153.

    CAS  Google Scholar 

  74. M. Dion, H. Rydberg, E. Schroder, D.C. Langreth, and B.I. Lundqvist, Phys. Rev. Lett. 92 246401 (2004).

    CAS  Google Scholar 

  75. O.A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. Lett. 93 153004 (2004).

    Google Scholar 

  76. M. Böhringer, K. Morgenstern, W.-D. Schneider, R. Berndt, F. Mauri, A. De Vita, and R. Car, Phys. Rev. Lett. 83 (1999) p. 324.

    Google Scholar 

  77. M.G. Hill, J.F. Penneau, B. Zinger, K.R. Mann, and L.L. Miller, Chem. Mater. 4 (1992) p. 1106.

    CAS  Google Scholar 

  78. H.H. Yu and T.M. Swager, IEEE J. Oceanic Eng. 29 (2004) p. 692.

    Google Scholar 

  79. J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, and I.W. Hunter, IEEE J. Oceanic Eng. 29 (2004) p. 706.

    Google Scholar 

  80. D.A. Scherlis and N. Marzari, J. Phys. Chem. B 108 (2004) p. 17791.

    Google Scholar 

  81. G. Csanyi, T. Albaret, M.C. Payne, and A. De Vita, Phys. Rev. Lett. 93 175503 (2004).

    Google Scholar 

  82. D.A. Scherlis, J.L. Fattebert, F. Gygi, M. Cococcioni, and N. Marzari, J. Chem. Phys. 124 074103 (2006).

    Google Scholar 

  83. J.L. Fattebert and F. Gygi, J. Comput. Chem. 23 (2002) p. 662.

    CAS  Google Scholar 

  84. A. Laio and M. Parrinello, Proc. Nat. Acad. Sci. USA 99 (2002) p. 12562.

    CAS  Google Scholar 

  85. Y. Kanai, A. Tilocca, A. Selloni, and R. Car, J. Chem. Phys. 121 (2004) p. 3359.

    CAS  Google Scholar 

  86. G. Henkelman, B.P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113 (2000) p. 9901.

    CAS  Google Scholar 

  87. C. Dellago, P.G. Bolhuis, F.S. Csajka, and D. Chandler, J. Chem. Phys. 108 (1998) p. 1964.

    CAS  Google Scholar 

  88. N. Mousseau and G.T. Barkema, Phys. Rev. E 57 (1998) p. 2419.

    Google Scholar 

  89. A.F. Voter, J. Chem. Phys. 106 (1997) p. 4665.

    CAS  Google Scholar 

  90. A.F. Voter, Phys. Rev. Lett. 78 (1997) p. 3908.

    CAS  Google Scholar 

  91. F. Mauri, B.G. Pfrommer, and S.G. Louie, Phys. Rev. Lett. 77 (1996) p. 5300.

    CAS  Google Scholar 

  92. C.J. Pickard and F. Mauri, Phys. Rev. B 63 245101 (2001).

    Google Scholar 

  93. A. Debernardi, M. Bernasconi, M. Cardona, and M. Parrinello, Appl. Phys. Lett. 71 (1997) p. 2692.

    CAS  Google Scholar 

  94. P.L. Silvestrelli, M. Bernasconi, and M. Parrinello, Chem. Phys. Lett. 277 (1997) p. 478.

    CAS  Google Scholar 

  95. P. Giannozzi and S. Baroni, J. Chem. Phys. 100 (1994) p. 8537.

    CAS  Google Scholar 

  96. G. Scamarcio, L. Tapfer, W. Konig, A. Fischer, K. Ploog, E. Molinari, S. Baroni, P. Giannozzi, and S. Degironcoli, Phys. Rev. B 43 (1991) p. 14754.

    Google Scholar 

  97. A. Pasquarello and R. Car, Phys. Rev. Lett. 79 (1997) p. 1766.

    CAS  Google Scholar 

  98. P. Umari and A. Pasquarello, Diamond and Related Mater. 14 (2005) p. 1255.

    CAS  Google Scholar 

  99. P. Umari, A. Pasquarello, and A. Dal Corso, Phys. Rev. B 63 094305 (2001).

    Google Scholar 

  100. S. Baroni and R. Resta, Phys. Rev. B 33 (1986) p. 5969.

    Google Scholar 

  101. A. Putrino, D. Sebastiani, and M. Parrinello, J. Chem. Phys. 113 (2000) p. 7102.

    CAS  Google Scholar 

  102. G.M. Rignanese, X. Gonze, and A. Pasquarello, Phys. Rev. B 6310 104305 (2001).

    Google Scholar 

  103. K. Reuter and M. Scheffler, Surf. Sci. 490 (2001) p. 20.

    CAS  Google Scholar 

  104. M. Taillefumier, D. Cabaret, A.M. Flank, and F. Mauri, Phys. Rev. B 66 195107 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzari, N. Realistic Modeling of Nanostructures Using Density Functional Theory. MRS Bulletin 31, 681–687 (2006). https://doi.org/10.1557/mrs2006.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.177

Keywords

Navigation