Skip to main content
Log in

Dynamical Heterogeneity in Supported Lipid Bilayers

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Planar-supported phospholipid bilayers are responsive surfaces that reconstruct when macromolecules adsorb. This review outlines the phenomenon of lipid diffusion “slaved” to or significantly controlled by that of macromolecular adsorbates. To elucidate such systems, we discuss the value of spatially resolved experiments at the few-molecule level, lipid diffusion compared in outer and inner leaflets of the supported bilayer, and a simple method to minimize defects by the strategy of “electrostatic stitching.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.M. Hooper, Mol. Membr. Biol. 16 (1999) p. 145.

    Google Scholar 

  2. W.H. Binder, V. Barragan, and F.M. Menger, Angew. Chem. Int. Ed. 42 (2003) p. 5802.

    Google Scholar 

  3. H. Cao, N. Tokutake, and S.L. Regen, J. Am. Chem. Soc. 125 (2003) p. 16182.

    Google Scholar 

  4. G.W. Feigenson and J.T. Buboltz, Biophys. J. 80 (2001) p. 2775.

    Google Scholar 

  5. M.L. Wagner and L.K. Tamm, Biophys. J. 81 (2001) p. 266.

    Google Scholar 

  6. A. Filippov, G. Orädd, and G. Lindblom, Biophys. J. 84 (2003) p. 3079.

    Google Scholar 

  7. A. Filippov, G. Orädd, and G. Lindblom, Biophys. J. 86 (2004) p. 891.

    Google Scholar 

  8. A. Raudino and F. Castelli, Macromolecules 30 (1997) p. 2495.

    Google Scholar 

  9. V. Yamazaki, O. Sirenko, R.J. Schafer, and J.T. Groves, J. Am. Chem. Soc. 127 (2005) p. 2826.

    Google Scholar 

  10. Y. Yuan, O.D. Velev, and A.M. Lenhoff, Langmuir 19 (2003) p. 3705.

    Google Scholar 

  11. A.V. Krylov, T.I. Rokitskaya, E.A. Kotova, A.A. Yaroslavov, and Y.N. Antonenko, J. Membrane Biol. 189 (2002) p. 119.

    Google Scholar 

  12. T.V. Ratto and M.L. Longo, Langmuir 19 (2003) p. 1788.

    Google Scholar 

  13. T.V. Ratto and M.L. Longo, Biophys. J. 83 (2002) p. 3380.

    Google Scholar 

  14. M.A. Deverall, E. Gindl, E.-K. Sinner, H. Besir, J. Ruehe, M.J. Saxton, and C.A. Naumann, Biophys. J. 88 (2005) p. 1875.

    Google Scholar 

  15. P.S. Cremer, J.T. Groves, L.A. Kung, and S.G. Boxer, Langmuir 15 (1999) p. 3893.

    Google Scholar 

  16. N.L. Thompson, A.M. Lieto, and N.W. Allen, Curr. Opin. Struc. Biol. 12 (2002) p. 634.

    Google Scholar 

  17. L. Zhang and S. Granick, Proc. Natl. Acad. Sci. USA 102 (2005) p. 9118.

    Google Scholar 

  18. M. Eigen and R. Rigler, Proc. Natl. Acad. Sci. USA 91 (1994) p. 5740.

    Google Scholar 

  19. H.A. Stone and A.J. Ajdari, J. Fluid Mech. 369 (1998) p. 151.

    Google Scholar 

  20. B. Maier and J.O. Rädler, Phys. Rev. Lett. 82 (1999) p. 1911.

    Google Scholar 

  21. B. Maier and J.O. Rädler, Macromolecules 33 (2000) p. 7185.

    Google Scholar 

  22. C. Hiergeist, V.A. Indrani, and R. Lipowsky, Europhys. Lett. 36 (1996) p. 491.

    Google Scholar 

  23. M. Breidenich, R.R. Netz, and R. Lipowsky, Europhys. Lett. 49 (2000) p. 431.

    Google Scholar 

  24. M. Breidenich, R.R. Netz, and R. Lipowsky, Eur. Phys. J. E 5 (2001) p. 403.

    Google Scholar 

  25. T. Bickel, C. Jeppesen, and C.M. Marques, Eur. Phys. J. E 4 (2001) p. 33.

    Google Scholar 

  26. J.-B. Fournier, Eur. Phys. J. B 11 (1999) p. 261.

    Google Scholar 

  27. J.T. Brooks, C.M. Marques, and M.E. Cates, J. Phys. II 1 (1991) p. 673.

    Google Scholar 

  28. Y.W. Kim and W. Sung, Europhys. Lett. 47 (1999) p. 292.

    Google Scholar 

  29. P.G. de Gennes, New Trends in Physics and Physical Chemistry of Polymers (Plenum, New York, 1990).

    Google Scholar 

  30. G.J. Fleer, M.A. Cohen Stuart, J.M. Scheutjens, T. Cosgrove, and B. Vincent, Polymers at Interfaces (Chapman & Hall, London, 1993).

    Google Scholar 

  31. L.D. Mayer, R. Krishna, M. Webb, and M. Bally, J. Lipid Res. 10 (2000) p. 99.

    Google Scholar 

  32. R.R. Nair, J.R. Rodgers, and L.A. Schwarz, Mol. Ther. 5 (2002) p. 455.

    Google Scholar 

  33. T.C.B. Vogt and B. Bechinger, J. Biol. Chem. 274 (1999) p. 29115.

    Google Scholar 

  34. J.F. Douglas, H.E. Johnson, and S. Granick, Science 262 (1993) p. 2010.

    Google Scholar 

  35. P. Frantz and S. Granick, Macromolecules 27 (1994) p. 2553.

    Google Scholar 

  36. A.F. Xie and S. Granick, Nature Mater. 1 (2002) p. 129.

    Google Scholar 

  37. Z.V. Feng, S. Granick, and A.A. Gewirth, Langmuir 20 (2004) p. 8796.

    Google Scholar 

  38. H. Liu and A. Chakrabarti, Polymer 40 (1999) p. 7285.

    Google Scholar 

  39. R.B. Gennis, Biomembranes: Molecular Structure and Function (Springer, New York, 1989).

    Google Scholar 

  40. J.C. van de Pas, Th.M. Olsthoorn, F.J. Schepers, C.H.E. de Vries, and C.J. Buytenhek, Colloids Surf. A 85 (1994) p. 221.

    Google Scholar 

  41. K.B. Rider, K.S. Hwang, M. Salmeron, and G.A. Somorjai, Phys. Rev. Lett. 86 (2001) p. 4330.

    Google Scholar 

  42. M. Hetzer, S. Heinz, S. Grage, and T.M. Bayerl, Langmuir 14 (1998) p. 982.

    Google Scholar 

  43. M.L. Wagner and L.K. Tamm, Biophys. J. 79 (2000) p. 1400.

    Google Scholar 

  44. C.A. Naumann, O. Prucker, T. Lehmann, J. Rühe, and C.W. Frank, Biomacromolecules 3 (2002) p. 27.

    Google Scholar 

  45. J. Liu and J.C. Conboy, J. Am. Chem. Soc. 126 (2004) p. 8376.

    Google Scholar 

  46. J. Liu and J.C. Conboy, Biophys. J. 89 (2005) p. 2522.

    Google Scholar 

  47. L. Zhang and S. Granick, J. Chem. Phys. 123 211104 (2005).

    Google Scholar 

  48. E. Evans and E. Sackmann, J. Fluid Mech. 194 (1988) p. 553.

    Google Scholar 

  49. A.F. Xie, R. Yamada, A.A. Gewirth, and S. Granick, Phys. Rev. Lett. 89 246103 (2002).

    Google Scholar 

  50. D. Keller, N.B. Larsen, I.M. Møller, and O.G. Mouritsen, Phys. Rev. Lett. 94 025701 (2005).

    Google Scholar 

  51. Z.V. Feng, T.A. Spurlin, and A.A. Gewirth, Biophys. J. 88 (2005) p. 2154.

    Google Scholar 

  52. A. Charrier and F. Thibaudau, Biophys. J. 89 (2005) p. 1094.

    Google Scholar 

  53. A.A. Gurtovenko, M. Patra, M. Karttunen, and I. Vattulainen, Biophys. J. 86 (2004) p. 3461.

    Google Scholar 

  54. L. Zhang, T.A. Spurlin, A.A. Gewirth, and S. Granick, J. Phys. Chem. B 110 (2006) p. 33.

    Google Scholar 

  55. V.P. Torchilin, Nat. Rev. Drug Disc. 4 (2005) p. 145.

    Google Scholar 

  56. L. Zhang and S. Granick, Nano Lett. 6 (2006) p. 694.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Granick, S. Dynamical Heterogeneity in Supported Lipid Bilayers. MRS Bulletin 31, 527–531 (2006). https://doi.org/10.1557/mrs2006.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.137

Keywords

Navigation