Skip to main content
Log in

Stacked, Folded, and Bent Lipid Membranes

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Lipid membranes are generally thought of as flat or spherical structures, much as we would view the plasma membrane of a cell. Within the cell, however, there exists a wide variety of stacked, folded, and other forms of bent structures that support and enable such functions as photosynthesis, light-sensing, protein synthesis, molecular shuttling, chemical uptake and release, and cell division. These functions benefit from the high asymmetry of the membrane. Stacked or folded structures provide a highly concentrated and ordered assembly for facile energy and molecular transport, while bent structures facilitate budding, division, and fusion events. In this article, we survey the progress made in understanding the formation of these membrane architectures, the development of synthetic forms of stacked and folded assemblies, and the unique materials issues they present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Yeagle, The Structure of Biological Membranes, 2nd ed. (CRC Press, Washington, DC, 2005).

    Google Scholar 

  2. R. Lipowsky, Curr. Opin. Struct. Biol. 5 (1995) p. 531.

    Google Scholar 

  3. X. Michalet and D. Bensimon, Science 269 (1995) p. 666.

    Google Scholar 

  4. E. Sackmann, H.-P. Duwe, and H. Engelhardt, Faraday Discuss. Chem. Soc. 81 (1986) p. 281.

    Google Scholar 

  5. H.T. McMahon and J.L. Gallop, Nature 438 (2005) p. 590.

    Google Scholar 

  6. G. van Meer, EMBO J. 24 (2005) p. 3159.

    Google Scholar 

  7. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).

    Google Scholar 

  8. S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Westview Press, Boulder, CO, 2003).

    Google Scholar 

  9. D. Nelson, T. Piran, and S. Weinberg, Eds., Statistical Mechanics of Membranes and Surfaces, 2nd Ed. (World Scientific, Singapore, 2003).

  10. R. Goetz, G. Gompper, and R. Lipowsky, Phys. Rev. Lett. 82 (1999) p. 221.

    Google Scholar 

  11. E. Lindahl and O. Edholm, Biophys. J. 79 (2000) p. 426.

    Google Scholar 

  12. M. Laradji and O.G. Mouritsen, J. Chem. Phys. 112 (2000) p. 8621.

    Google Scholar 

  13. S.J. Marrink and A.E. Mark, J. Phys. Chem. B 105 (2001) p. 6122.

    Google Scholar 

  14. E. Evans and W. Rawicz, Phys. Rev. Lett. 64 (1990) p. 2094.

    Google Scholar 

  15. L. Fernandez-Puente, I. Bivas, M.D. Mitov, and P. Meleard, Europhys. Lett. 28 (1994) p. 181.

    Google Scholar 

  16. G. Niggemann, M. Kummrow, and W. Helfrich, J. Phys. II 5 (1995) p. 413.

    Google Scholar 

  17. U. Seifert, Adv. Phys. 46 (1997) p. 13.

    Google Scholar 

  18. E. Sackmann, H.-P. Duwe, and H. Engelhardt, Faraday Disc. Chem. Soc. 81 (1986) p. 281.

    Google Scholar 

  19. S.J. Marrink and A.E. Mark, J. Am. Chem. Soc. 125 (2003) p. 11144.

    Google Scholar 

  20. M.J. Stevens, J.H. Hoh, and T.B. Woolf, Phys. Rev. Lett. 91 188102–1 (2003).

    Google Scholar 

  21. M. Muller, K. Katsov, and M. Schick, Biophys. J. 85 (2003) p. 1611.

    Google Scholar 

  22. J.C. Shillcock and R. Lipowsky, Nature Mater. 4 (2005) p. 225.

    Google Scholar 

  23. R. Faller and S.J. Marrink, Langmuir 20 (2004) p. 7686.

    Google Scholar 

  24. M.J. Stevens, J. Am. Chem. Soc. 127 (2005) p. 15330.

    Google Scholar 

  25. M.J. Stevens, J. Chem. Phys. 121 (2004) p. 11942.

    Google Scholar 

  26. J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, and M.L. Klein, J. Phys. Chem. B 105 (2001) p. 4464.

    Google Scholar 

  27. S. Izvekov and G.A. Voth, J. Phys. Chem. B 109 (2005) p. 2469.

    Google Scholar 

  28. R. Chang, G.S. Ayton, and G.A. Voth, J. Chem. Phys. 122 244716 (2005).

    Google Scholar 

  29. E. Lindahl and O. Edholm, Biophys. J. 79 (2000) p. 426.

    Google Scholar 

  30. S.W. Chiu, S. Vasudevan, E. Jakobsson, R. Jay Mashl, and H.L. Scott, Biophys. J. 85 (2003) p. 3624.

    Google Scholar 

  31. J.C. Shillcock and R. Lipowsky, J. Chem. Phys. 117 (2002) p. 5048.

    Google Scholar 

  32. Y. Barenholz and G. Cevc, in Physical Chemistry of Biological Interfaces, edited by A. Baszkin and W. Norde (Marcel Dekker, New York, 2000) p. 171.

    Google Scholar 

  33. D.Y. Sasaki, Cell Biochem. Biophys. 39 (2003) p. 145.

    Google Scholar 

  34. M.J. Stevens and M.O. Robbins, Euro. Phys. Lett. 12 (1991) p. 81.

    Google Scholar 

  35. M.-T. Lee, W.-C. Hung, F.-Y. Chen, and H.W. Huang, Biophys. J. 89 (2005) p. 4006.

    Google Scholar 

  36. B. Habermann, EMBO Rep. 5 (2003) p. 250.

    Google Scholar 

  37. J.P. Dekker and E.J. Boekema, Biochim. Biophys. Acta 1706 (2005) p. 12.

    Google Scholar 

  38. A.G. Lee, Curr. Biology 10 (2000) p. R377.

    Google Scholar 

  39. I. Simidjiev, S. Stoylova, H. Amenitsch, T. Jávorfi, L. Mustárdy, P. Laggner, A. Holzenburg, and G. Garab, Proc. Natl. Acad. Sci. USA 97 (2000) p. 1473.

    Google Scholar 

  40. B.T. Rubin, W.S. Chow, and J. Barber, Biochim. Biophys. Acta, Bioenerg. 634 (1981) p. 174.

    Google Scholar 

  41. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson, Molecular Biology of the Cell, 3rd ed. (Garland Publishing, New York, 1994).

    Google Scholar 

  42. E.L. Snapp, R.S. Hegde, M. Francolini, F. Lombardo, S. Colombo, E. Pedrazzini, N. Borgese, and J. Lippincott-Schwartz, J. Cell. Biol. 163 (2003) p. 257.

    Google Scholar 

  43. G. Vergères, T.S.B. Yen, J. Aggeler, J. Lausier, and L. Waskell, J. Cell Sci. 106 (1993) p. 249.

    Google Scholar 

  44. A. Yamamoto, R. Masaki, and Y. Tashiro, J. Cell Sci. 109 (1996) p. 1727.

    Google Scholar 

  45. A. Stier, S.A.E. Finch, R. Greinert, R. Müller, and H. Taniguchi, Top. Aging Res. Eur. 1 (1984) p. 133.

    Google Scholar 

  46. A.J. Markvoort, K. Pieterse, M.N. Steijaert, P. Spijker, and P.A.J. Hilbers, J. Phys. Chem. B 109 (2005) p. 22649.

    Google Scholar 

  47. S.J. Marrink and D.P. Tieleman, Biophys. J. 83 (2002) p. 2386.

    Google Scholar 

  48. D.P. Siegel, Biophys. J. 76 (1999) p. 291.

    Google Scholar 

  49. F. Jülicher and R. Lipowsky, Phys. Rev. E 53 (1996) p. 2670.

    Google Scholar 

  50. T. Baumgart, S.T. Hess, and W.W. Webb, Nature 425 (2003) p. 821.

    Google Scholar 

  51. M. Laradji and P.B.S. Kumar, Phys. Rev. Lett. 93 198105–1 (2004).

    Google Scholar 

  52. J. Zhang, B. Jing, N. Tokutake, and S. Regen, J. Am. Chem. Soc. 126 (2004) p. 10856.

    Google Scholar 

  53. C. Cescato, P. Walde, and P.L. Luisi, Langmuir 13 (1997) p. 4480.

    Google Scholar 

  54. B.N. Thomas, C.R. Safinya, R.J. Plano, and N.A. Clark, Science 267 (1995) p. 1635.

    Google Scholar 

  55. E.C. Constable, W. Meier, C. Nardin, and S. Mundwiler, Chem. Commun. (1999) p. 1483.

  56. C. Wang, S. Wang, J. Huang, Z. Li, Q. Gao, and B. Zhu, Langmuir 19 (2003) p. 7676.

    Google Scholar 

  57. W. Meier, Langmuir 16 (2000) p. 1457.

    Google Scholar 

  58. S.A. Walker and J.A. Zasadzinski, Langmuir 13 (1997) p. 5076.

    Google Scholar 

  59. D. Papahadjopoulos, W.J. Vail, K. Jacobson, and G. Poste, Biochim. Biophys. Acta 394 (1975) p. 483.

    Google Scholar 

  60. T.S. Awad, Y. Okamoto, S.M. Masum, and M. Yamazaki, Langmuir 21 (2005) p. 11556.

    Google Scholar 

  61. T.A. Waggoner, J.A. Last, P.G. Kotula, and D.Y. Sasaki, J. Am. Chem. Soc. 123 (2001) p. 496.

    Google Scholar 

  62. J.O. Rädler, I. Koltover, T. Salditt, and C.R. Safinya, Science 275 (1997) p. 810.

    Google Scholar 

  63. G.C.L. Wong, J.X. Tang, A. Lin, Y. Li, P.A. Janmey, and C.R. Safinya, Science 288 (2000) p. 2035.

    Google Scholar 

  64. O. Farago, N. Gronbech-Jensen, and P. Pincus, Phys. Rev. Lett. 96 018102 (2006).

    Google Scholar 

  65. J. Yamamoto and H. Tanaka, Nature Mater. 4 (2005) p. 75.

    Google Scholar 

  66. V. Proux-Delrouyre, C. Elie, J.M. Laval, J. Moiroux, and C. Bourdillon, Langmuir 18 (2002) p. 3263.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, D.Y., Stevens, M.J. Stacked, Folded, and Bent Lipid Membranes. MRS Bulletin 31, 521–526 (2006). https://doi.org/10.1557/mrs2006.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.136

Keywords

Navigation