Skip to main content
Log in

A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The broader context of this discussion, based on a workshop where materials technologists and computational scientists engaged in a dialogue, is an awareness that modeling and simulation techniques and computational capabilities may have matured sufficiently to provide heretofore unavailable insights into the complex microstructural evolution of materials in extreme environments. As an example, this article examines the study of ultrahigh-temperature oxidation-resistant ceramics, through the combination of atomistic simulation and selected experiments. We describe a strategy to investigate oxygen transport through a multi-oxide scale—the protective layer of ultrahigh-temperature ceramic composites ZrB2-SiC and HfB2-SiC—by combining first-principles and atomistic modeling and simulation with selected experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Computational Science: Ensuring America’s Competitiveness, report of the President’s Information Technology Advisory Committee (PITAC), www.nitrd.gov/pitac (accessed April 2006).

  2. Another recent call for community response is the NSF Blue Ribbon Panel report on Simulation-Based Engineering Science, www.ices.utexas.edu/events/SBES_Final_Report.pdf (accessed April 2006).

  3. S. Yip, ed., Handbook of Materials Modeling (Springer, New York, 2005).

  4. AFOSR Specialist Meeting on Modeling Materials in Extreme Environments, Washington, D.C., September 24–25, 2005, alum.mit.edu/www/liju99/Papers/05/ME2 (accessed April 2006).

  5. I.G. Talmy et al., in Proc. 22nd Annu. Conf. Composites, Advanced Ceramics, Materials, and Structures, edited by D. Bray (American Ceramic Society, Westerville, Ohio, 1998).

    Google Scholar 

  6. M.M. Opeka, I.G. Talmy, and J.A. Zaykoski, J. Mater. Sci. 39 (2004) p. 5887.

    Google Scholar 

  7. W.C. Beard, Research on Phase Equilibria between Boron Oxides and Refractory Oxides, including Silicon and Aluminum Oxides, Air Force Contract 33(616)-6509, Report 931-9 (AD 271937) (1962).

  8. H.C. Graham, in Ceramics in Severe Environments, edited by W.W. Kriegel and H. Palmour (Plenum Press, New York, 1971).

    Google Scholar 

  9. L. Kaufman, E.V. Clougherty, and J.B. Berkowitz-Mattuck, Trans. Metall. Society AIME 239 (1967) p. 458.

    Google Scholar 

  10. J.B. Berkowitz-Mattuck, J. Electrochem. Soc. 113 (1966) p. 908.

    Google Scholar 

  11. C. Wagner, Zeitschrift für Physikalische Chemie, Abteilung B, Chemie der Elementarprozesse Aufbau der Materie 32 (1936) p. 447.

    Google Scholar 

  12. C.W. Wagner, in Atom Movements (American Society For Metals, Cleveland, Ohio, 1951) p. 153.

    Google Scholar 

  13. R.A. Rapp, High-Temperature Corrosion (American Chemical Society, Washington, D.C., 1980).

    Google Scholar 

  14. E. Opila, S. Levine, and J. Lorincz, J. Mater. Sci. 39 (2004) p. 5969.

    Google Scholar 

  15. I.G. Talmy, J.A. Zaykoski, M.M. Opeka, and S. Dallek, in High-Temperature Corrosion and Materials Chemistry III, edited by E.J. Opila, M.J. McNallan, D.A. Shores, and D.A. Shifler (The Electrochemical Society, Pennington, N.J., 2001) p. 144.

    Google Scholar 

  16. C. Vinckier, P. Coeckelberghs, G. Stevens, M. Heyns, and S. De Jaegere, J. Appl. Phys. 62 (1987) p. 1450.

    Google Scholar 

  17. S.A. Raspopov, A.G. Gusakov, A.D. Voropayev, and V.K. Grishin, in Fundamentals Aspects of High-Temperature Corrosion VI, edited by D.A. Shores, R.A. Rapp, and P. Hou (The Electrochemical Society, Pennington, N.J., 1996) p. 151.

    Google Scholar 

  18. D.E. Rosner and H.D. Allendorf, AIAA J. 6 (1968) p. 650.

    Google Scholar 

  19. D.E. Rosner and H.D. Allendorf, J. Phys. Chem. 74 (1970) p. 1829.

    Google Scholar 

  20. M.J.H. Balat, J. Eur. Ceram. Soc. 16 (1996) p. 55.

    Google Scholar 

  21. D.G. Fletcher and D.J. Bamford, Arcjet Flow Characterization Using Laser-Induced Fluorescence of Atomic Species (AIAA, 1998) paper 98-2458.

  22. J.D. Bull, D.J. Rasky, and J.C. Karika, in Proc. 16th Conf. Metal Matrix, Carbon, and Ceramic Matrix Composites (Cocoa Beach, Fla., 1992) p. 247.

    Google Scholar 

  23. J.D. Bull, D.J. Rasky, H.K. Tran, and A. Balter-Peterson, in Proc. 17th Conf. Metal Matrix, Carbon, and Ceramic Matrix Composites, edited by J.D. Buckley (Cocoa Beach, Fla., 1993) p. 653.

    Google Scholar 

  24. A.G. Metcalfe, N.B. Elsner, D.T. Allen, E. Wuchina, M. Opeka, and E. Opila, Electrochem. Soc. Proc. 99-38 (1999) p. 489.

    Google Scholar 

  25. B.E. Deal and A.S. Grove, J. Appl. Phys. 36 (1965) p. 3770.

    Google Scholar 

  26. E.P. Gusev, H.C. Lu, T. Gustafsson, and E. Garfunkel, Phys. Rev. B 52 (1995) p. 1759.

    Google Scholar 

  27. E. Rosencher, A. Straboni, S. Rigo, and G.O. Amsel, Appl. Phys. Lett. 34 (1979) p. 254.

    Google Scholar 

  28. D.R. Hamann, Phys. Rev. Lett. 81 (1998) p. 3447.

    Google Scholar 

  29. A. Bongiorno and A. Pasquarello, Microelectron. Eng. 59 (2001) p. 167.

    Google Scholar 

  30. A. Bongiorno and A. Pasquarello, Phys. Rev. Lett. 88 125901-1, 125901-4 (2002).

    Google Scholar 

  31. A. Bongiorno and A. Pasquarello, J. Phys.: Condens. Matter 15 (2003) p. S1553.

    Google Scholar 

  32. A. Bongiorno and A. Pasquarello, Phys. Rev. B 70 195312 (2004).

    Google Scholar 

  33. F.J. Norton, Nature 191 (1961) p. 701.

    Google Scholar 

  34. A. Bongiorno and A. Pasquarello, Phys. Rev. Lett. 93 086102 (2004).

    Google Scholar 

  35. A. Bongiorno and A. Pasquarello, Appl. Phys. Lett. 83 (2003) p. 1417.

    Google Scholar 

  36. A. Bongiorno, A. Pasquarello, M.S. Hybertsen, and L.C. Feldman, Phys. Rev. Lett. 90 186101 (2003).

    Google Scholar 

  37. A. Bongiorno and A. Pasquarello, Appl. Surf. Sci. 234 (2004) p. 190.

    Google Scholar 

  38. T. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, Phys. Rev. Lett. 82 (1999) p. 4866.

    Google Scholar 

  39. T.J. Campbell, G. Aral, S. Ogata, R.K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. B 71 205413 (2005).

    Google Scholar 

  40. F.H. Streitz and J.W. Mintmire, Phys. Rev. B 50 (1994) p. 11996.

    Google Scholar 

  41. J.C. Sanchez-Lopez, A. Fernandez, C.F. Conde, A. Conde, C. Morant, and J.M. Sanz, Nanostruct. Mater. 7 (1996) p. 813.

    Google Scholar 

  42. J.W. Hinze, W.C. Tripp, and H.C. Graham, J. Electrochem. Soc. 122 (1975) p. 1249.

    Google Scholar 

  43. S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, and J.A. Salem, J. Eur. Ceram. Soc. 22 (2002) p. 2757.

    Google Scholar 

  44. B.R. Rogers, Z. Song, J. Marschall, N. Queraltó, and C.A. Zorman, in High-Temperature Corrosion and Materials Chemistry V, edited by E. Opila (The Electrochemical Society, Pennington, N.J., 2004) p. 268.

    Google Scholar 

  45. J. Marschall, A. Chamberlain, D. Crunkleton, and B. Rogers, J. Spacecraft Rock. 41 (2004) p. 576.

    Google Scholar 

  46. T. Hoshino, M. Hata, S. Neya, Y. Nishioka, T. Watanabe, K. Tatsumura, and I. Ohdomari, Japanese J. Appl. Phys. 42 (2003) p. 3560.

    Google Scholar 

  47. T. Hoshino, M. Hata, S. Neya, Y. Nishioka, T. Watanabe, K. Tatsumura, and I. Ohdomari, Japanese J. Appl. Phys. 42 (2003) p. 6535.

    Google Scholar 

  48. A.M. Stoneham, M.A. Szymanski, and A.L. Shluger, Phys. Rev. B 63 241304-1, 241304-4 (2001).

    Google Scholar 

  49. A.S. Foster, A.L. Shluger, and R.M. Nieminen, Phys. Rev. Lett. 89 225901 (2002).

    Google Scholar 

  50. A.S. Foster, F. Lopez Gejo, A.L. Shluger, and R.M. Nieminen, Phys. Rev. B 65 174117 (2002).

    Google Scholar 

  51. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R.K. Kalia, Comput. Phys. Commun. 138 (2001) p. 143.

    Google Scholar 

  52. S. Ogata, F. Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta, J. Appl. Phys. 95 (2004) p. 5316.

    Google Scholar 

  53. A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A 105 (2001) p. 9396.

    Google Scholar 

  54. L. Greengard and V. Rokhlin, J. Comput. Phys. 73 (1987) p. 325.

    Google Scholar 

  55. S. Ogata, T.J. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, and S. Vemparala, Comput. Phys. Commun. 153 (2003) p. 445.

    Google Scholar 

  56. A. Nakano, Comput. Phys. Commun. 104 (1997) p. 59.

    Google Scholar 

  57. A. Nakano, R.K. Kalia, P. Vashishta, T.J. Campbell, S. Ogata, F. Shimojo, and S. Saini, Sci. Prog. 10 (2002) p. 263.

    Google Scholar 

  58. G. Henkelman and H. Jonsson, J. Chem. Phys. 113 (2000) p. 9978.

    Google Scholar 

  59. T. Zhu, J. Li, X. Lin, and S. Yip, J. Mech. Phys. Solids 53 (2005) p. 1597.

    Google Scholar 

  60. Y, Wang, L.Q. Chen, and A.G. Khachaturyan, Acta Metallurg. Mater. 41 (1993) p. 279.

    Google Scholar 

  61. L.Q. Chen, Annu. Rev. Mater. Res. 32 (2002) p. 113.

    Google Scholar 

  62. J.J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86 (2001) p. 5530.

    Google Scholar 

  63. A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner, Phys. Rev. B 58 (1998) p. 2975.

    Google Scholar 

  64. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates, Calphad–Computer Coupling of Phase Diagrams and Thermochemistry 26 (2002) p. 175.

    Google Scholar 

  65. D. deFontaine, in Solid State Physics: Advances in Research and Applications, Vol. 47 (1994) p. 33.

    Google Scholar 

  66. A. van de Walle, M. Asta, and G. Ceder, in Calphad–Computer Coupling of Phase Diagrams and Thermochemistry 26 (2002) p. 539. ■

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongiorno, A., Först, C.J., Kalia, R.K. et al. A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics. MRS Bulletin 31, 410–418 (2006). https://doi.org/10.1557/mrs2006.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.103

Keywords

Navigation