Skip to main content
Log in

Magnetic Tape: The Challenge of Reaching Hard-Disk-Drive Data Densities on Flexible Media

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

By the end of 2006, the areal density of magnetic recording on tape will approach that seen in hard disk drives of the early to mid-1990s. These operating conditions are reviewed in relation to the operating conditions deemed necessary for the future of magnetic data storage on tape.What results is a clear set of tasks, encompassing both materials and systems architecture issues, to achieve very high-density data storage on magnetic tape, leading to 10 Tbyte tape cartridge capacities and higher. The key to achieving on tape the areal densities of tens to hundreds of Gbit in.2, common in hard disk drives (HDDs), lies primarily in the properties of the medium itself. As for volumetric density of the storage entity, HDDs and tape cartridges are roughly equivalent. The mechanical dimensional uncertainties that accompany the use of flexible, as opposed to rigid, media means that both the mechanical and magnetic properties of materials play a key role in the future of tape. The need for new architectures to overcome the track placement problem that results from increasing track density on flexible media are reviewed, as well as the “particles in a binder” concept that has served so well as the physical basis of tape media over the past 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.R. Childers, W. Imaino, J. Eaton, G. Jaquette, P. Koeppe, and D. Hellman, IBM J. Res. & Dev. 47 (4) (2003) p. 471.

    Google Scholar 

  2. S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33 (1997) p. 978.

    Google Scholar 

  3. D. Weller and W. Moser, IEEE Trans. Magn. 35 (6) (1999) p. 4423.

    Google Scholar 

  4. Richard H. Dee, in Proc. Tenth NASA Goddard Space Flight Center Conf. on Mass Storage Systems and Technologies, College Park, Md., NASA/ CP-2002-210000 (April 15–18, 2002) p. 109.

  5. C. Tsang, M.-M Chen, T. Yogi, and K. Ju, IEEE Trans. Magn. 26 (5) (1990) p. 1689.

    Google Scholar 

  6. Ching Tsang, H. Santini, D. McCown, J. Lo, and R. Lee, IEEE Trans. Magn. 32 (1) (1996) p. 7.

    Google Scholar 

  7. H. Kanai, J. Okamoto, Y. Ohtsuka, T. Sugawara, J. Koshikawa, J. Toda, Y. Uematsu, M. Shinohara, and Y. Mizoshita, IEEE Trans. Magn. 32 (5) (1996) p. 3914.

    Google Scholar 

  8. C. Tsang, M. Pinarbasi, H. Santini, E. Marinero, P. Arnett, R. Olson, R. Hsiao, M. Williams, R. Payne, R. Wang, J. Moore, B. Gurney, T. Lin, and R. Fontana, IEEE Trans. Magn. 35 (2) (1999) p. 689.

    Google Scholar 

  9. F.H. Liu, K. Stoev, X. Shi, H.C. Tong, C. Chien, Z.W. Dong, X. Yan, M. Gibbons, S. Funada, Y. Liu, P. Prabhu, S. Dey, M. Schultz, S. Mahotra, B. Lal, J. Kimmal, M. Russak, and P. Kern, IEEE Trans. Magn. 36 (5) (2000) p. 2140.

    Google Scholar 

  10. K. Stoev, F. Liu, X. Shi, H. Tong, Y. Chen, C. Chien, Z.W. Dong, M. Gibbons, S. Funada, P. Prabhu, H. Nguyen, D. Wachenschwanz, L. Mei, M. Schultz, S. Malhotra, B. Lal, J. Kimmal, M. Russak, A. Talalai, and A. Varlahanov, IEEE Trans. Magn. 37 (4) (2000) p. 1264.

    Google Scholar 

  11. Z. Zhang, Y. Chang Feng, T. Clinton, G. Badran, N.H. Yeh, G. Tarnopolsky, E. Girt, M. Munteanu, S. Harkness, H. Richter, T. Nolan, R. Ranjan, S. Hwang, G. Rauch, M. Ghaly, D. Larson, E. Singleton, V. Vas’ko, J. Ho, F. Stageberg, V. Kong, K. Duxstad, and S. Slade, IEEE Trans. Magn. 38 (5) (2002) p. 1861.

    Google Scholar 

  12. M.L. Williams and R.L. Comstock, in Proc. 17th Annu. AIP Conf. (1971) p. 738.

  13. John Mallinson, Foundations of Magnetic Recording, 2nd Ed. (Academic Press, New York, 1993) p. 116.

    Google Scholar 

  14. Materials pervasive today are PET (polyethylene teraphthalate) and PEN (polyethylene napthalate) with ARAMID (aromatic polyamide) used in helical-scan drives.

  15. M.P. Sharrock, IEEE Trans. Magn. 36 (5) (2000) p. 2420.

    Google Scholar 

  16. Y. Sasaki, N. Usuki, K. Matsuo, and M. Kishimoto, IEEE Trans. Magn. 41 (10) (2005) p. 3241.

    Google Scholar 

  17. J. Bai and Jian-Ping Wang, Dig. IEEE Int. Conf. Magnetics 2005 (4–8 April, 2005) p. 655.

    Google Scholar 

  18. R.H. Dee, IEEE Trans. Magn. 38 (5) (2002) p. 1922.

    Google Scholar 

  19. H. Tetsukawa, M. Kondo, Y. Soda, T. Ozue, K. Motohashi, S. Onodera, and T. Kawana, IEEE Trans. Magn. 38 (5) (2002) p. 1910.

    Google Scholar 

  20. T. Sugawara, M. Yamagishi, H. Mutoh, K. Shimoda and Y. Mizoshita, IEEE Trans. Magn. 29 (6) (1993) p. 4021.

    Google Scholar 

  21. M. Kobayashi, H. Ohta, and A. Murata, IEEE Trans. Magn. 27 (6) (1991) p. 4526.

    Google Scholar 

  22. J. Coutellier, H. Magna, and X. Pirot, IEEE Trans. Magn. 28 (5) (1992) p. 2653.

    Google Scholar 

  23. C. Maillot and F. Maurice, IEEE Trans. Magn. 28 (5) (1992) p. 2656. ■

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dee, R.H. Magnetic Tape: The Challenge of Reaching Hard-Disk-Drive Data Densities on Flexible Media. MRS Bulletin 31, 404–408 (2006). https://doi.org/10.1557/mrs2006.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.102

Keywords

Navigation