Skip to main content
Log in

Degradation of SiC High-Voltage pin Diodes

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The recent discovery of forward-voltage degradation in SiC pin diodes has created an obstacle to the successful commercialization of SiC bipolar power devices. Accordingly, it has attracted intense interest around the world. This article summarizes the progress in both the fundamental understanding of the problem and its elimination.The degradation is due to the formation of Shockley-type stacking faults in the drift layer, which occurs through glide of bounding partial dislocations. The faults gradually cover the diode area, impeding current flow. Since the minimization of stress in the device structure could not prevent this phenomenon, its driving force appears to be intrinsic to the material. Stable devices can be fabricated by eliminating the nucleation sites, namely, dissociated basal-plane dislocations in the drift layer.Their density can be reduced by the conversion of basal-plane dislocations propagating from the substrate into threading dislocations during homoepitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Baliga, in Wide-Bandgap Semiconductors for High Power, High Frequency, and High Temperature, edited by S. DenBaars, J. Palmour, M. Shur, and M. Spencer (Mater. Res. Soc. Symp. Proc. 512, Warrendale, PA, 1998) p. 77.

  2. R. Singh, J.A. Cooper Jr., M.R. Melloch, T.P. Chow, and J.W. Palmour, IEEE Trans. Electron Devices 49 (2002) p. 665.

    Article  CAS  Google Scholar 

  3. H. Lendenmann, F. Dahlquist, N. Johansson, R. Söderholm, P.A. Nilsson, J.P. Bergman, and P. Skytt, Mater. Sci. Forum 353–356 (2001) p. 727.

    Article  Google Scholar 

  4. J.P. Bergman, H. Lendenmann, P.Å. Nilsson, and P. Skytt, Mater. Sci. Forum 353–356 (2001) p. 299.

    Article  Google Scholar 

  5. J.Q. Liu, M. Skowronski, C. Hallin, R. Söderholm, and H. Lendenmann, Appl. Phys. Lett. 80 (2002) p. 749.

    Article  CAS  Google Scholar 

  6. P.O.Å. Persson, L. Hultman, H. Jacobson, J.P. Bergman, E. Janzén, J.M. Molina-Aldareguia, W.J. Clegg, and T. Tuomi, Appl. Phys. Lett. 80 (2002) p. 4852.

    Article  CAS  Google Scholar 

  7. M.E. Twigg, R.E. Stahlbush, M. Fatemi, S.D. Arthur, J.B. Fedison, J.B. Tucker, and S. Wang, Appl. Phys. Lett. 82 (2003) p. 2410; M.E. Twigg, R.E. Stahlbush, M. Fatemi, S.D. Arthur, J.B. Fedison, J.B. Tucker, and S. Wang, Appl. Phys. Lett. 84 (2004) p. 4816.

    Article  CAS  Google Scholar 

  8. S. Ha, K. Hu, M. Skowronski, J.J. Sumakeris, M.J. Paisley, and M.K. Das, Appl. Phys. Lett. 84 (2004) p. 5267.

    Article  CAS  Google Scholar 

  9. A. Galeckas, J. Linnros, B. Breitholtz, and H. Bleichner, J. Appl. Phys. 90 (2001) p. 980.

    Article  CAS  Google Scholar 

  10. R.E. Stahlbush, M. Fatemi, J.B. Fedison, S.D. Arthur, L.B. Rowland, and S. Wang, J. Electron. Mater. 31 (2002) p. 370 and p. 827.

    Article  CAS  Google Scholar 

  11. E. Janzén, A. Henry, J.P. Bergman, A. Ellison, and B. Magnusson, Mater. Sci. Semicond. Process. 4 (2001) p. 181.

    Article  Google Scholar 

  12. S.G. Sridhara, F.H.C. Carlsson, J.P. Bergman, and E. Janzén, Appl. Phys. Lett. 79 (2001) p. 3944.

    Article  CAS  Google Scholar 

  13. M.S. Miao, S. Limpijumnong, and W.R.L. Lambrecht, Appl. Phys. Lett. 79 (2001) p. 4360.

    Article  CAS  Google Scholar 

  14. H. Iwata, U. Lindefelt, S. Öberg, and P.R. Briddon, Phys. Rev. B 65 033203 (2001).

    Article  Google Scholar 

  15. H. Jacobson, J. Birch, R. Yakimova, M. Syväjärvi, J.P. Bergman, A. Ellison, T. Tuomi, and E. Janzén, J. Appl. Phys. 91 (2002) p. 6354.

    Article  CAS  Google Scholar 

  16. S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann, Appl. Phys. Lett. 83 (2003) p. 4957.

    Article  CAS  Google Scholar 

  17. M. Skowronski, J.Q. Liu, W.M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann, J. Appl. Phys. 92 (2002) p. 4699.

    Article  CAS  Google Scholar 

  18. S. Ha, M. Skowronski, and H. Lendenmann, J. Appl. Phys. 96 (2004) p. 393.

    Article  CAS  Google Scholar 

  19. M. Zhang, P. Pirouz, and H. Lendenmann, Appl. Phys. Lett. 83 (2003) p. 3320.

    Article  CAS  Google Scholar 

  20. A.T. Blumenau, C.J. Fall, R. Jones, S. Öberg, T. Frauenheim, and P.R. Briddon, Phys. Rev. B 68 174108 (2003).

    Article  Google Scholar 

  21. A. Galeckas, J. Linnros, and P. Pirouz, Appl. Phys. Lett. 81 (2002) p. 883.

    Article  CAS  Google Scholar 

  22. S. Ha, M. Skowronski, J.J. Sumakeris, M.J. Paisley, and M.K. Das, Phys. Rev. Lett. 92 177504 (2004).

    Article  Google Scholar 

  23. S. Ha, P. Mieszkowski, M. Skowronski, and L.B. Rowland, J. Cryst. Growth 244 (2002) p. 257.

    Article  CAS  Google Scholar 

  24. J.J. Sumakeris, M. Das, H.M. Hobgood, S.G. Müller, M.J. Paisley, S. Ha, M. Skowronski, J.W. Palmour, and C.H. Carter, Jr., Mater. Sci. Forum 457–460 (2004) p. 1113.

    Article  Google Scholar 

  25. T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, and K. Arai, J. Cryst. Growth 271 (2004) p. 1.

    Article  CAS  Google Scholar 

  26. M.K. Das, J.J. Sumakeris, M.J. Paisley, and A.R. Powell, Mater. Sci. Forum 457–460 (2004) p. 1105.

    Article  Google Scholar 

  27. Y. Negoro, T. Kimoto, and H. Matsunami, Jpn. J. Appl. Phys. 43 (2004) p. 471.

    Article  CAS  Google Scholar 

  28. Y. Tanaka, K. Fukuda, K. Arai, K. Kojima, T. Suzuki, and T. Yatsuo, Appl. Phys. Lett. 84 (2004) p. 1774.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, S., Bergman, J.P. Degradation of SiC High-Voltage pin Diodes. MRS Bulletin 30, 305–307 (2005). https://doi.org/10.1557/mrs2005.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.78

Keywords

Navigation