Skip to main content
Log in

Interface Passivation for Silicon Dioxide Layers on Silicon Carbide

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Silicon carbide is a promising semiconductor for advanced power devices that can outperform Si devices in extreme environments (high power, high temperature, and high frequency). In this article, we discuss recent progress in the development of passivation techniques for the SiO2/4H-SiC interface critical to the development of SiC metal oxide semiconductor field-effect transistor (MOSFET) technology. Significant reductions in the interface trap density have been achieved, with corresponding increases in the effective carrier (electron) mobility for inversion-mode 4H-SiC MOSFETs. Advances in interface passivation have revived interest in SiC MOSFETs for a potentially lucrative commercial market for devices that operate at 5 kV and below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Materials for High-Temperature Semiconductor Devices, National Research Council Report NMAB-747 (National Academy Press, Washington, DC, 1995).

  2. M. Iwami, Nucl. Instr. Methods Phys. Res., Sect. A 466 (2001) p. 406.

    Article  CAS  Google Scholar 

  3. T.P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, and R.J. Gutman, Solid-State Electron. 44 (2001) p. 277.

    Article  Google Scholar 

  4. J.A. Cooper, M.R. Melloch, R. Singh, A. Agarwal, and J.W. Palmour, IEEE Trans. Electron Devices 49 (4) (2002) p. 658.

    Article  CAS  Google Scholar 

  5. B.J. Baliga, IEEE Electron Device Lett. 10 (1989) p. 455.

    Article  Google Scholar 

  6. Cree Inc., DARPA Wide-Bandgap PI Review Meeting, May 11–14, 2004, Monterey, CA.

  7. N.S. Saks and A.K. Agarwal, Appl. Phys. Lett. 77 (2000) p. 3281.

    Article  CAS  Google Scholar 

  8. K. Chatty, S. Banerjee, T.P. Chow, R.J. Gutmann, E. Arnold, and D. Alok, Mater. Sci. Forum 389–393 (2002) p. 1041.

    Article  Google Scholar 

  9. R. Schorner, P. Friedrichs, D. Peters, and D. Stephani, IEEE Electron Device Lett. 20 (1999) p. 241.

    Article  CAS  Google Scholar 

  10. G. Chung, C.C. Tin, J.H. Won, and J.R. Williams, Mater. Sci. Forum 338–342 (2000) p. 1097.

    Article  Google Scholar 

  11. M.K. Das, B.S. Um, and J.A. Cooper, Mater. Sci. Forum 338–342 (2000) p. 1069.

    Article  Google Scholar 

  12. V.V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, Phys. Status Solidi A 162 (1997) p. 321.

    Article  CAS  Google Scholar 

  13. V.V. Afanas’ev, Microelectron. Eng. 48 (1999) p. 241.

    Article  Google Scholar 

  14. G. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.A. Weller, M. Di Ventra, S.T. Pantelides, and L.C. Feldman, Appl. Phys. Lett. 76 (13) (2000) p. 1713.

    Article  CAS  Google Scholar 

  15. V.V. Afanas’ev, A. Stesmans, F. Ciobanu, G. Pensl, K.Y. Cheong, and S. Dimitrijev, Appl. Phys. Lett. 82 (4) (2003) p. 568.

    Article  Google Scholar 

  16. H. Li, S. Dimitrijev, H.B. Harrison, and D. Sweatman, Appl. Phys. Lett. 70 (15) (1997) p. 2028.

    Article  CAS  Google Scholar 

  17. L.A. Lipkin, M.K. Das, and J.W. Palmour, Mater. Sci. Forum 389–393 (2002) p. 985.

    Article  Google Scholar 

  18. G. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, O.W. Holland, L.C. Feldman, M.K. Das, and J.W. Palmour, IEEE Electron Device Lett. 22 (4) (2001) p. 176.

    Article  CAS  Google Scholar 

  19. C.-Y. Lu, J.A. Cooper, G. Chung, J.R. Williams, K. McDonald, and L.C. Feldman, Mater. Sci. Forum 389–393 (2002) p. 977.

    Article  Google Scholar 

  20. M.K. Das, Mater. Sci. Forum 457–460 (2004) p. 1275.

    Article  Google Scholar 

  21. K. McDonald, PhD dissertation, Vanderbilt University (2001).

  22. G. Chung, J.R. Williams, K. McDonald, and L.C. Feldman, J. Phys. Condens. Matter 16 (2004) p. 1857.

    Article  Google Scholar 

  23. J.A. Cooper, Phys. Status Solidi A 162 (1997) p. 305.

    Article  CAS  Google Scholar 

  24. R.F. Pierret, Field Effect Devices, Volume IV of The Modular Series on Solid State Devices, 2nd Ed., edited by G.W. Neudeck and R.F. Pierret (Addison-Wesley, Boston, 1990).

    Google Scholar 

  25. K.-C. Chang, Y. Cao, L.M. Porter, J. Bentley, S. Dhar, L. C. Feldman, and J.R. Williams, “High-resolution elemental profiles of the silicon sioxide/4H-silicon carbide interface,” J. Appl. Phys. (2004) submitted.

  26. K. McDonald, L.C. Feldman, R.A. Weller, G.Y. Chung, C.C. Tin, and J. R. Williams, J. Appl. Phys. 93 (2003) p. 2257.

    Article  CAS  Google Scholar 

  27. P. Jamet and S. Dimitrijev, Appl. Phys. Lett. 79 (2001) p. 323.

    Article  CAS  Google Scholar 

  28. C. Virojanadara and L.I. Johansson, J. Phys. Condens. Matter 16 (2004) p. 3435.

    Article  Google Scholar 

  29. H.J. von Bardeleben, J.L. Cantin, I.C. Vickridge, Y. Song, S. Dhar, L.C. Feldman, J.R. Williams, L. Ke, Y. Shishkin, R.P. Devaty, and W.J. Choyke, “Modification of the oxide/semiconductor interface by high-temperature NO treatments: a combined EPR, NRA, and XPS study on oxidized porous and bulk n-type 4H-SiC,” presented at the European Conf. on SiC and Related Materials (Bologna, Italy, October 2004).

    Google Scholar 

  30. J.R. Williams, T. Isaacs-Smith, S. Wang, C. Ahyi, R.M. Lawless, C.C. Tin, S. Dhar, A. Franceschetti, S.T. Pantelides, L.C. Feldman, C. Chung, and M. Chisholm, in Fundamentals of Novel Oxide-Semiconductor Interfaces, edited by C.R. Abernathy, E.P. Gusev, D. Schlom, and S. Stemmer (Mater. Res. Soc. Symp. Proc. 786, Warrendale, PA, 2004) p. 371.

  31. S. Dhar, PhD dissertation, Vanderbilt University (2004).

  32. K. Fukuda, S. Suzuki, T. Tanaka, and K. Arai, Appl. Phys. Lett. 76 (12) (2000) p. 1585.

    Article  CAS  Google Scholar 

  33. J. Senzaki, K. Kojima, S. Harada, R. Kosugi, S. Senzaki, T. Suzuki, and K. Fukuda, IEEE Electron Device Lett. 23 (1) (2002) p. 13.

    Article  CAS  Google Scholar 

  34. Y. Song, S. Dhar, L.C. Feldman, G. Chung, and J.R. Williams, J. Appl. Phys. 95 (2004) p. 4953.

    Article  CAS  Google Scholar 

  35. I. Trimaille, J.-J. Ganem, I.C. Vickridge, S. Rigo, G. Battistig, E. Szilagyi, I.J. Baumvol, C. Radtke, and F.C. Stedile, Nucl. Instrum. Methods Phys. Res., Sect. B 219–220 (2004) p. 914.

    Article  Google Scholar 

  36. W. Lu, L.C. Feldman, Y. Song, S. Dhar, W.E. Collins, W.C. Mitchel, and J. R. Williams, Appl. Phys. Lett. 85 (2004) p. 3495.

    Article  CAS  Google Scholar 

  37. K. Fukuda, M. Kato, J. Senzaki, K. Kojima, and T. Suzuki, Mater. Sci. Forum 457–460 (2003) p. 1417.

    Google Scholar 

  38. S. Dhar, L.C. Feldman, S. Wang, T. Isaacs-Smith, and J.R. Williams, “Interface trap passivation for SiO2/(000–1) 4H-SiC,” J. Appl. Phys. (2004) submitted.

  39. S. Wang, T. Isaacs-Smith, J.R. Williams, S. Dhar, and L.C. Feldman, unpublished manuscript.

  40. S. Dhar, Y.W. Song, L.C. Feldman, T. Isaacs-Smith, C.C. Tin, J.R. Williams and G. Chung, Appl. Phys. Lett. 84 (9) (2004) p. 1498.

    Article  CAS  Google Scholar 

  41. H. Yano, T. Hirao, T. Kimoto, and H. Matsunami, Appl. Phys. Lett. 78 (2001) p. 374.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhar, S., Wang, S., Williams, J.R. et al. Interface Passivation for Silicon Dioxide Layers on Silicon Carbide. MRS Bulletin 30, 288–292 (2005). https://doi.org/10.1557/mrs2005.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.75

Keywords

Navigation