Skip to main content
Log in

Can We Build a Large-Scale Quantum Computer Using Semiconductor Materials?

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The following article is based on the Symposium X presentation given by Bruce E. Kane (University of Maryland) at the 2004 Materials Research Society Spring Meeting in San Francisco. Quantum computing has the potential to revolutionize our ability to solve certain classes of difficult problems. A quantum computer is able to manipulate individual two-level quantum states (“qubits”) in the same way that a conventional computer processes binary ones and zeroes. Here, Kane discusses some of the most promising proposals for quantum computing, in which the qubit is associated with single-electron spins in semiconductors. While current research is focused on devices at the one- and two-qubit level, there is hope that cross-fertilization with advancing conventional computer technology will enable the eventual development of a large-scale (thousands of qubits) semiconductor quantum computer.The author focuses on materials issues that will need to be surmounted if large-scale quantum computing is to be realizable. He argues in particular that inherent fluctuations in doped semiconductors will severely limit scaling and that scalable quantum computing in semiconductors may only be possible at the end of the road of Moore’s law scaling, when devices are engineered and fabricated at the atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For an introduction to the topic, see M.A. Nielson and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).

    Google Scholar 

  2. P.W. Shor, in Proc. 35th Annu. Symp. on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994) p. 124.

    Book  Google Scholar 

  3. P.W. Shor, SIAM J. Comp. 26 (1997) p. 1484.

    Article  Google Scholar 

  4. C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D. Wineland, Phys. Rev. Lett. 75 (1995) p. 4714.

    Article  CAS  Google Scholar 

  5. D. Kielpinski, C. Monroe, and D.J. Wineland, Nature 417 (2002) p. 709.

    Article  CAS  Google Scholar 

  6. Y. Nakamura, Y.A. Pashkin, and J.S. Tsai, Nature 398 (1999) p. 786.

    Article  CAS  Google Scholar 

  7. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, C. Esteve, and M.H. Devoret, Science 296 (2002) p. 886.

    Article  CAS  Google Scholar 

  8. J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, and L.P. Kouwenhoven, Nature 430 (2004) p. 431.

    Article  CAS  Google Scholar 

  9. X. Li, Y. Wu, D. Steel, D. Gammon, T.H. Stievater, D.S. Katzer, D. Park, C. Piermarocchi, and L.J. Sham, Science 301 (2003) p. 809.

    Article  CAS  Google Scholar 

  10. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 92 076401 (2004).

    Article  CAS  Google Scholar 

  11. G. Feher and E.A. Gere, Phys. Rev. 114 (1959) p. 1245.

    Article  CAS  Google Scholar 

  12. A.M. Tyryshkin, S.A. Lyon, A.V. Astashkin, and A.M. Raitsimring, Phys. Rev. B 68 193207 (2003).

  13. B.E. Kane, Nature 393 (1998) p. 133.

    Article  CAS  Google Scholar 

  14. R. Vrijen, E. Yablonovitch, K. Wang, H.W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, and D. DiVincenzo, Phys. Rev. A 62 012306 (2000).

    Article  Google Scholar 

  15. M. Friesen, P. Rugheimer, D.E. Savage, M.G. Lagally, D.W. Van der Weide, R. Joynt, and M.A. Eriksson, Phys. Rev. B 67 121301 (2003).

    Article  Google Scholar 

  16. Even single-qubit operations are unnecessary in certain architectures. See D. Bacon, J. Kempe, D.A. Lidar, and K.B. Whaley, Phys. Rev. Lett. 85 (2000) p. 1758; and D.P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K.B. Whaley, Nature 408 (2000) p. 339.

    Article  CAS  Google Scholar 

  17. J. Levy, Phys. Rev. A 64 052306 (2001).

    Article  Google Scholar 

  18. A.M. Stoneham, A.J. Fisher, and P.T. Greenland, J. Phys. Condens. Matter 15 (2003) p. L447.

    Article  CAS  Google Scholar 

  19. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57 (1998) p. 120.

    Article  CAS  Google Scholar 

  20. G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B 59 (1999) p. 2070.

    Article  CAS  Google Scholar 

  21. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B 61 R16315 (2000).

    Article  CAS  Google Scholar 

  22. J.M. Elzerman, R. Hanson, J.S. Greidanus, L.H. Willems van Beveren, S. De Franceschi, L.M.K. Vandersypen, S. Tarucha, and L.P. Kouwenhoven, Phys. Rev. B 67 161308 (2003).

    Article  Google Scholar 

  23. X. Hu and S. Das Sarma, Phys. Rev. A 61 062301 (2000).

    Article  Google Scholar 

  24. N. Mason, M.J. Biercuk, and C.M. Marcus, Science 303 (2004) p. 655.

    Article  CAS  Google Scholar 

  25. L. Oberbeck, N.J. Curson, M.Y. Simmons, R. Brenner, A.R. Hamilton, S.R. Schofield, and R.G. Clark, Appl Phys. Lett. 81 (2002) p. 3197; J.L. O’Brien, S.R. Schofield, M.Y. Simmons, R.G. Clark, A.S. Dzurak, N.J. Curson, B.E. Kane, N.S. McAlpine, M.E. Hawley, and G.W. Brown, Phys. Rev. B 64 161401 (2001).

    Article  CAS  Google Scholar 

  26. T. Schenkel, A. Persaud, S.J. Park, J. Nilsson, J. Bokor, J.A. Liddle, R. Keller, D.H. Schneider, D.W. Cheng, and D.E. Humphries, J. Appl. Phys. 94 (2003) p. 7017.

    Article  CAS  Google Scholar 

  27. R.W. Keyes, Philos. Mag. B 81 (2001) p. 1315; also R. Keyes, Rev. Mod. Phys. 61 (1989) p. 279.

    Article  CAS  Google Scholar 

  28. See A.M. Steane, Nature 399 (1999) p. 124 and references therein.

    Article  CAS  Google Scholar 

  29. E. Knill, R. Laflamme, and W.H. Zurek, Science 279 (1998) p. 342.

    Article  CAS  Google Scholar 

  30. N. Isailovic, M. Whitney, Y. Patel, J. Kubiatowicz, D. Copsey, F.T. Chong, I.L. Chuang, and M. Oskin, Trans. Architecture Code Optimization 1 (2004) p. 34.

    Article  Google Scholar 

  31. See L. Pfeiffer, K.W. West, H.L. Stormer, and K.W. Baldwin, Appl. Phys. Lett. 55 (1989) p. 1888 and references therein.

    Article  CAS  Google Scholar 

  32. J.A. Nixon, J.H. Davies, and H.U. Baranger, Phys. Rev. B 43 (1991) p. 12638.

    Article  CAS  Google Scholar 

  33. B.E. Kane, L.N. Pfeiffer, and K.W. West, Appl. Phys. Lett. 67 (1995) p. 1262.

    Article  CAS  Google Scholar 

  34. B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88 027903 (2002).

    Article  Google Scholar 

  35. C.J. Wellard, L.C.L. Hollenberg, F. Parisoli, L.M. Kettle, H.-S. Goan, J.A.L. McIntosh, and D.N. Jamieson, Phys. Rev. B 68 195209 (2003).

    Article  Google Scholar 

  36. B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. B 66 115201 (2002).

    Article  Google Scholar 

  37. R. de Sousa, J.D. Delgado, and S. Das Sarma, “Silicon quantum computation based on magnetic dipolar coupling,” arXiv.org e-print archive, cond-mat/0311403 (accessed December 2004).

  38. A.J. Skinner, M.E. Davenport, and B.E. Kane, Phys. Rev. Lett. 90 087901 (2003).

    Article  CAS  Google Scholar 

  39. J.S. Xia, W. Pan, C.L. Vincente, E.D. Adams, N.S. Sullivan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, “Electron correlation in the second Landau level; a competition between many, nearly degenerate quantum phases,” arXiv.org e-print archive, cond-mat/0406724 (accessed December 2004).

  40. M.F. Crommie, C.P. Lutz, and D.M. Eigler, Science 262 (1993) p. 218.

    Article  CAS  Google Scholar 

  41. A.J. Heinrich, C.P. Lutz, J.A. Gupta, and D.M. Eigler, Science 298 (2002) p. 1381.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kane, B.E. Can We Build a Large-Scale Quantum Computer Using Semiconductor Materials?. MRS Bulletin 30, 105–110 (2005). https://doi.org/10.1557/mrs2005.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.29

Keywords

Navigation