Skip to main content
Log in

Quantum Information

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The following article is based on the plenary address by Luiz Davidovich (Federal University of Rio de Janeiro), presented on April 14, 2004, at the 2004 MRS Spring Meeting in San Francisco. The field of quantum information is a discipline that aims to investigate methods for characterizing, transmitting, storing, compressing, and computationally utilizing the information carried by quantum states. It owes its rapid development over the last few years to several factors: the ability, developed in several laboratories, to control and measure simple microscopic systems; the discovery of fast quantum algorithms; and the recognition that Moore’s law will soon lead to the single-atom limit of elementary computing gates.Cryptography and quantum computing are among the main applications in the field.They rely on the subtle and fundamental properties of the quantum world: the unavoidable disturbance associated with measurement, the superposition principle, and the nonlocal properties of entangled states. Progress in this area is intimately connected to a deep understanding of quantum physics: recent achievements include the experimental demonstration of teleportation and detailed investigations of the role of the environment in the quantum–classical transition. This article reviews basic concepts and recent developments in the field of quantum information, emphasizing the close ties between fundamental research and possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Br. J. Philosophy Sci. 3 (1952) p. 109.

    Article  Google Scholar 

  2. See, for instance, The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger (Springer, Berlin, 2000).

  3. E. Schrödinger, Naturw. 23 (1935) pp. 807, 823, and 844. English translation by J.D. Trimmer, Proc. Am. Phys. Soc. 124 (1980) p. 3235; A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47 (1935) p. 777.

    Article  Google Scholar 

  4. For a detailed review of this field, see, for instance, M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000), or the lecture notes by J. Preskill, available at http://www.theory.caltech.edu/people/preskill/ph229/ (accessed December 2004).

    Google Scholar 

  5. P.W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” Proc. 35nd Annu. Symp. on Foundations of Comp. Sci. (IEEE Computer Society Press, 1994) p. 124; P. W. Shor, SIAM J. Computing 26 (1997) p. 1484.

  6. L. Grover, Phys. Rev. Lett. 79 (1997) p. 325.

    Article  CAS  Google Scholar 

  7. P. Benioff, Phys. Rev. Lett. 48 (1982) p. 1581.

    Article  Google Scholar 

  8. R.P. Feynman, Int. J. of Theor. Phys. 21 (1982) p. 467; Optics News 11 (1985) p. 11.

    Article  Google Scholar 

  9. D. Deutsch, Proc. R. Soc. London, Ser. A 400 (1985) p. 97.

    Article  Google Scholar 

  10. W.K. Wootters and W.H. Zurek, Nature 299 (1982) p. 802.

    Article  CAS  Google Scholar 

  11. C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. IEEE Int. Conf. Computers, Systems, and Signal Processing (1984) p. 175.

  12. For a review, see N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74 (2002) p. 145.

    Article  Google Scholar 

  13. A. Poppe, A. Fedrizzi, R. Ursin, H.R. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, Opt. Express 12 (2004) p. 3865.

    Article  CAS  Google Scholar 

  14. id Quantique SA home page, http://www.idquantique.com/; MagiQ Technologies home page, http://www.magiqtech.com/; NEC Corp. home page, http://www.nec.com/; Toshiba Research Europe Ltd. home page http://www.toshiba-europe.com/research/ (accessed December 2004).

  15. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, Phys. Rev. Lett. 70 (1993) p. 1895.

    Article  CAS  Google Scholar 

  16. L. Davidovich, N. Zagury, M. Brune, J.M. Raimond, and S. Haroche, Phys. Rev. A 50 (1994) p. R895.

    Article  CAS  Google Scholar 

  17. For reviews, see P. Berman, Ed., Cavity Quantum Electrodynamics (Academic Press, New York, 1994).

  18. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature 390 (1997) p. 575; D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, Phys. Rev. Lett. 80 (1998) p. 1121; A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, and E.S. Polzik, Science 282 (1998) p. 706; M.A. Nielsen, E. Knill, and R. Laflamme, Nature 396 (1998) p. 52; I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421 (2003) p. 509; M. Riebe, H. Häffner, C.F. Roos, W. Hänsel, J. Benhelm, G.P.T. Lancaster, T.W. Körber, C. Becher, F. Schmidt-Kaler, D.F.V. James, and R. Blatt, Nature 429 (2004) p. 734; M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J.D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D.J. Wineland, Nature 429 (2004) p. 737; R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, Nature 430 (2004) p. 849.

    Article  CAS  Google Scholar 

  19. D.P. DiVincenzo, Phys. Rev. A 51 (1995) p. 1015; A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys. Rev. A 52 (1995) p. 3457.

    Article  CAS  Google Scholar 

  20. D.P. DiVincenzo, Fortschritte der Physik 48 (9–11) (2000) p. 771.

    Article  Google Scholar 

  21. J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74 (1995) p. 4091.

    Article  CAS  Google Scholar 

  22. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57 (1998) p. 120; A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83 (1999) p. 4204.

    Article  CAS  Google Scholar 

  23. D.V. Averin, J. Low Temp. Phys. 118 (2000) p. 781; Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, Nature 398 (1999) p. 786; J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, and S. Lloyd, Science 285 (1999) p. 1036; I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, and J.E. Mooij, Science 299 (2003) p. 1869; Y. Makhlin, G. Schön, and A. Shnirman, Nature 398 (1999) p. 305; Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73 (2001) p. 357.

    Article  CAS  Google Scholar 

  24. N.A. Gershenfeld and I.L. Chuang, Science 275 (1997) 350; L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, and I.L. Chuang, Nature 414 (2001) p. 883.

    Article  CAS  Google Scholar 

  25. B.E. Kane, Nature 393 (1998) p. 133.

    Article  CAS  Google Scholar 

  26. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, and P. Zoller, Phys. Rev. Lett. 81 (1998) p. 3108; I.H. Deutsch, G.K. Brennen, and P.S. Jessen, Fortschritte der Physik 48 (2000) p. 925; M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, Nature 415 (2002) p. 39.

    Article  CAS  Google Scholar 

  27. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, and R. Blatt, Nature 422 (2003) p. 408; D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D.J. Wineland, Nature 422 (2003) p. 412.

    Article  CAS  Google Scholar 

  28. P.W. Shor, Phys. Rev. A 52 (1995) p. R2493; A.M. Steane, Phys. Rev. Lett. 77 (1996) p. 793; R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek, Phys. Rev. Lett. 77 (1996) p. 198.

    Article  CAS  Google Scholar 

  29. D.A. Lidar, I.L. Chuang, and K.B. Whaley, Phys. Rev. Lett. 81 (1998) p. 2594.

    Article  CAS  Google Scholar 

  30. A.R.R. Carvalho, P. Milman, R.L. de Matos Filho, and L. Davidovich, Phys. Rev. Lett. 86 (2001) p. 4988.

    Article  CAS  Google Scholar 

  31. See, for instance, J. Preskill, Proc. R. Soc. London, Ser. A 454 (1998) p. 384; E. Knill, R. Laflamme, and W.H. Zurek, Science 279 (1998) p. 342; and D. Aharonov, in Annu. Rev. Comput. Phys. VI, edited by D. Stauffer (World Scientific, Singapore, 1999).

    Google Scholar 

  32. For a review, see W.H. Zurek, Rev. Mod. Phys. 75 (2003) p. 715.

    Article  Google Scholar 

  33. L. Davidovich, M. Brune, J.M. Raimond, and S. Haroche, Phys. Rev. A 53 (1996) p. 1295; M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.M. Raimond, and S. Haroche, Phys. Rev. Lett. 77 (1996) p. 4887.

    Article  CAS  Google Scholar 

  34. D. Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer, and D.J. Wineland, Science 304 (2004) p. 1476.

    Article  CAS  Google Scholar 

  35. C.H. Bennett, seminar presentation. A similar diagram can be found at http://www.research.ibm.com/quantuminfo/teleportation/ (accessed December 2004).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidovich, L. Quantum Information. MRS Bulletin 30, 99–104 (2005). https://doi.org/10.1557/mrs2005.28

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.28

Keywords

Navigation