Skip to main content

Advertisement

Log in

Fabrication of Device Nanostructures Using Supercritical Fluids

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Supercritical fluids including carbon dioxide offer a combination of properties that are uniquely suited for device fabrication at the nanoscale. Liquid-like densities, favorable transport properties, and the absence of surface tension enable solution-based processing in an environment that behaves much like a gas. These characteristics provide a means for extending “top-down” processing methods including metal deposition, cleaning, etching, and surface modification chemistries to the smallest device features. The interaction of carbon dioxide with polymeric materials also enables complete structural specification of nanostructured metal oxide films using a “bottom-up” approach in which deposition reactions are conducted within sacrificial, pre-organized templates dilated by the fluid. The result is high-fidelity replication of the template structure in a new material. In particular, block copolymer templates yield well-ordered porous silica and titania films containing spherical or vertically aligned pores that can serve as device substrates for applications in microelectronics, detection arrays, and energy conversion. Finally, the synthesis of nanoparticles and nanowires in supercritical fluids is developing rapidly and offers promise for the efficient production of well-defined materials. In this review, we summarize these developments and discuss their potential for nextgeneration device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Linstrom and W.G. Mallard, eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg, Md., June 2005); Web site http://webbook.nist.gov (accessed September 2005).

  2. Y.F. Zong, PhD thesis, University of Massachusetts (2005).

  3. B.D. Vogt, PhD thesis, University of Massachusetts (2003).

  4. R.R. Gupta, V.S. RamachandraRao, and J.J. Watkins, Macromolecules 36 (2003) p. 1295.

    Article  CAS  Google Scholar 

  5. International Technology Roadmap for Semiconductors (ITRS), 2003 Edition, http://public.itrs.net/Files/2003ITRS/Home2003.htm (accessed September 2005).

  6. International Technology Roadmap for Semiconductors (ITRS), 2004 Update, http://www.itrs.net/Common/2004Update/2004Update.htm (accessed September 2005).

  7. G.L. Weibel and C.K. Ober, Microelectron. Eng. 65 (2003) p. 145.

    Article  Google Scholar 

  8. A. O’Neil and J.J. Watkins, Green Chem. 6 (2004) p. 363.

    Article  CAS  Google Scholar 

  9. C.A. Jones, A. Zweber, J.P. DeYoung, J.B. McClain, R. Carbonell, and J.M. DeSimone, Crit. Rev. Solid State Mater. Sci. 29 (2004) p. 97.

    Article  CAS  Google Scholar 

  10. F. Cansell, C. Aymonier, and A. Loppinet-Serani, Curr. Opin. Solid State Mater. Sci. 7 (2003) p. 331.

    Article  CAS  Google Scholar 

  11. B.N. Hansen, B.M. Hybertson, R.M. Barkley, and R.E. Sievers, Chem. Mater. 4 (1992) p. 749.

    Article  CAS  Google Scholar 

  12. R.E. Sievers and B.N. Hansen, “Chemical Deposition Methods Using Supercritical Fluid Solutions,” U.S. Patent 4,970,093 (November 13, 1990).

  13. V.K. Popov, V.N. Bagratashvili, E.N. Antonov, and D.A. Lemenovski, Thin Solid Films 279 (1996) p. 66.

    Article  CAS  Google Scholar 

  14. J.M. Blackburn, D.P. Long, A. Cabanas, and J.J. Watkins, Science 294 (2001) p. 141.

    Article  CAS  Google Scholar 

  15. A. Cabanas, X.Y. Shan, and J.J. Watkins, Chem. Mater. 15 (2003) p. 2910.

    Article  CAS  Google Scholar 

  16. J.M. Blackburn, D.P. Long, and J.J. Watkins, Chem. Mater. 12 (2000) p. 2625.

    Article  CAS  Google Scholar 

  17. E.T. Hunde and J.J. Watkins, Chem. Mater. 16 (2004) p. 498.

    Article  CAS  Google Scholar 

  18. D.P. Long, J.M. Blackburn, and J.J. Watkins, Adv. Mater. 12 (2000) p. 913.

    Article  CAS  Google Scholar 

  19. J.J. Watkins, J.M. Blackburn, and T.J. McCarthy, Chem. Mater. 11 (1999) p. 213.

    Article  CAS  Google Scholar 

  20. A. Cabanas, D.P. Long, and J.J. Watkins, Chem. Mater. 16 (2004) p. 2028.

    Article  CAS  Google Scholar 

  21. A. O’Neil and J.J. Watkins, (2005) unpublished manuscript.

  22. E. Kondoh, Jpn. J. Appl. Phys. Pt. 1: Regul. Pap. Short Notes Rev. Pap. 43 (2004) p. 3928.

    Article  CAS  Google Scholar 

  23. Y.F. Zong and J.J. Watkins, Chem. Mater. 17 (2005) p. 560.

    Article  CAS  Google Scholar 

  24. Y.F. Zong, X.Y. Shan, and J.J. Watkins, Langmuir 20 (2004) p. 9210.

    Article  CAS  Google Scholar 

  25. J.M. Blackburn, J. Gaynor, J. Drewery, E. Hunde, and J.J. Watkins, Adv. Metallization Conf. Proc. (Warrendale, PA, 2003) p. 601.

  26. J.J. Watkins, J.M. Blackburn, D.P. Long, and J.L. Lazorcik, “Chemical Fluid Deposition Method for the Formation of Metal and Metal Alloy Films on Patterned and Unpatterned Substrates,” U.S. Patent 6,689,700 (February 10, 2004).

  27. J.J. Watkins and T.J. McCarthy, “A Method of Chemically Depositing Material onto a Substrate,” U.S. Patent 5,789,027 (August 4, 1998).

  28. H. Ohde, S. Kramer, S. Moore, and C.M. Wai, Chem. Mater. 16 (2004) p. 4028.

    Article  CAS  Google Scholar 

  29. X.R. Ye, C.M. Wai, D.Q. Zhang, Y. Kranov, D.N. McIlroy, Y.H. Lin, and M. Engelhard, Chem. Mater. 15 (2003) p. 83.

    Article  CAS  Google Scholar 

  30. H. Wakayama, N. Setoyama, and Y. Fukushima, Adv. Mater. 15 (2003) p. 742.

    Article  CAS  Google Scholar 

  31. B. Xie, C.C. Finstad, and A.J. Muscat, Chem. Mater. 17 (2005) p. 1753.

    Article  CAS  Google Scholar 

  32. C.A. Bessel, G.M. Denison, J.M. DeSimone, J. DeYoung, S. Gross, C.K. Schauer, and P.M. Visintin, J. Am. Chem. Soc. 125 (2003) p. 4980.

    Article  CAS  Google Scholar 

  33. X.Y. Shan and J.J. Watkins, Thin Solid Films (2005) in press.

  34. C.T. Cao, A.Y. Fadeev, and T.J. McCarthy, Langmuir 17 (2001) p. 757.

    Article  CAS  Google Scholar 

  35. J.R. Combes, L.D. White, and C.P. Tripp, Langmuir 15 (1999) p. 7870.

    Article  CAS  Google Scholar 

  36. B.P. Gorman, R.A. Orozco-Teran, Z. Zhang, P.D. Matz, D.W. Mueller, and R.F. Reidy, J. Vac. Sci. Technol. B 22 (2004) p. 1210.

    Article  CAS  Google Scholar 

  37. B. Xie and A.J. Muscat, in Ultra-Clean Processing of Silicon Surfaces VII, Vol. 103–104 (Trans Tech, Brussels, 2005) p. 323.

    Google Scholar 

  38. B. Xie and A.J. Muscat, Microelectron. Eng. 76 (2004) p. 52.

    Article  CAS  Google Scholar 

  39. J.M. Cotte, D.L. Goldfarb, K.J. McCullough, W.M. Moreau, K.R. Pope, J.P. Simons, and C.J. Taft, “Process of Drying Semiconductor Wafers Using Liquid or Supercritical Carbon Dioxide,” U.S. Patent 6,398,875 (June 4, 2002).

  40. J.M. Cotte, D.L. Goldfarb, K.J. McCullough, W.M. Moreau, K.R. Pope, J.P. Simons, and C.J. Taft, “Process of Cleaning Semiconductor Processing, Handling, and Manufacturing Equipment,” U.S. Patent 6,454,869 (September 24, 2002).

  41. D.L. Goldfarb, J.J. de Pablo, P.F. Nealey, J.P. Simons, W.M. Moreau, and M. Angelopoulos, J. Vac. Sci. Technol. B 18 (2000) p. 3313.

    Article  CAS  Google Scholar 

  42. H. Namatsu, J. Photopolym. Sci. Technol. 15 (2002) p. 381.

    Article  CAS  Google Scholar 

  43. H. Namatsu, Jpn. J. Appl. Phys. Pt. 2: Lett. Express Lett. 43 (2004) p. L456.

    Article  CAS  Google Scholar 

  44. H. Namatsu, K. Yamazaki, and K. Kurihara, J. Vac. Sci. Technol. B 18 (2000) p. 780.

    Article  CAS  Google Scholar 

  45. E.N. Hoggan, D. Flowers, K. Wang, J.M. DeSimone, and R.G. Carbonell, Ind. Eng. Chem. Res. 43 (2004) p. 2113.

    Article  CAS  Google Scholar 

  46. N. Sundararajan, S. Yang, K. Ogino, S. Valiyaveettil, J.G. Wang, X.Y. Zhou, C.K. Ober, S.K. Obendorf, and R.D. Allen, Chem. Mater. 12 (2000) p. 41.

    Article  CAS  Google Scholar 

  47. V.Q. Pham, R.J. Ferris, A. Hamad, and C.K. Ober, Chem. Mater. 15 (2003) p. 4893.

    Article  CAS  Google Scholar 

  48. D. Flowers, E.N. Hoggan, R. Carbonell, and J.M. DeSimone, SPIE Proc. 419 (2002) p. 4690.

    Google Scholar 

  49. F.S. Bates and G.H. Fredrickson, Physics Today 52 (1999) p. 32.

    Article  CAS  Google Scholar 

  50. B.D. Vogt, G.D. Brown, V.S. RamachandraRao, and J.J. Watkins, Macromolecules 32 (1999) p. 7907.

    Article  CAS  Google Scholar 

  51. B.D. Vogt, V.S. RamachandraRao, R.R. Gupta, K.A. Lavery, T.J. Francis, T.P. Russell, and J.J. Watkins, Macromolecules 36 (2003) p. 4029.

    Article  CAS  Google Scholar 

  52. V.S. RamachandraRao, R.R. Gupta, T.P. Russell, and J.J. Watkins, Macromolecules 34 (2001) p. 7923.

    Article  CAS  Google Scholar 

  53. R.R. Gupta, K.A. Lavery, T.J. Francis, J.R.P. Webster, G.S. Smith, T.P. Russell, and J.J. Watkins, Macromolecules 36 (2003) p. 346.

    Article  CAS  Google Scholar 

  54. R.G. Wissinger and M.E. Paulaitis, J. Polym. Sci. Pt. B-Polym. Phys. 25 (1987) p. 2497.

    Article  CAS  Google Scholar 

  55. J.J. Watkins and T.J. McCarthy, Macromolecules 28 (1995) p. 4067.

    Article  CAS  Google Scholar 

  56. J.J. Watkins and T.J. McCarthy, Macromolecules 27 (1994) p. 4845.

    Article  CAS  Google Scholar 

  57. D.H. Sun, R. Zhang, Z.M. Liu, Y. Huang, Y. Wang, J. He, B.X. Han, and G.Y. Yang, Macromolecules 38 (2005) p. 5617.

    Article  CAS  Google Scholar 

  58. J.J. Watkins and T.J. McCarthy, Chem. Mater. 7 (1995) p. 1991.

    Article  CAS  Google Scholar 

  59. R.A. Pai, R. Humayun, M.T. Schulberg, A. Sengupta, J.N. Sun, and J.J. Watkins, Science 303 (2004) p. 507.

    Article  CAS  Google Scholar 

  60. S. Nagarajan, R.A. Pai, T.P. Russell, J.J. Watkins, M. Li, K.S. Bosworth, P. Busch, D.M. Smilgies, and C.K. Ober, Adv. Mater. (2005) submitted.

  61. P. Du, M.Q. Li, K. Douki, X.F. Li, C.R.W. Garcia, A. Jain, D.M. Smilgies, L.J. Fetters, S.M. Gruner, U. Wiesner, and C.K. Ober, Adv. Mater. 16 (2004) p. 953.

    Article  CAS  Google Scholar 

  62. B.D. Vogt, R.A. Pai, H.J. Lee, R.C. Hedden, C.L. Soles, W.L. Wu, E.K. Lin, B.J. Bauer, and J.J. Watkins, Chem. Mater. 17 (2005) p. 1398.

    Article  CAS  Google Scholar 

  63. R.A. Pai and J.J. Watkins, Adv. Mater. (2005) accepted.

  64. W.E. Stallings and H.H. Lamb, Langmuir 19 (2003) p. 2989.

    Article  CAS  Google Scholar 

  65. D.M. Hess and J.J. Watkins (2005) unpublished manuscript.

  66. G. Bhatnagar and J.J. Watkins (2005) unpublished manuscript.

  67. P.S. Shah, T. Hanrath, K.P. Johnston, and B.A. Korgel, J. Phys. Chem. B 108 (2004) p. 9574.

    Article  CAS  Google Scholar 

  68. J.P. Cason, K. Khambaswadkar, and C.B. Roberts, Ind. Eng. Chem. Res. 39 (2000) p. 4749.

    Article  CAS  Google Scholar 

  69. J.C. Liu, P. Raveendran, Z. Shervani, Y. Ikushima, and Y. Hakuta, Chem. Eur. J. 11 (2005) p. 1854.

    Article  CAS  Google Scholar 

  70. C.L. Kitchens and C.B. Roberts, Ind. Eng. Chem. Res. 43 (2004) p. 6070.

    Article  CAS  Google Scholar 

  71. H.L. Zhang, B.X. Han, J.C. Liu, X.G. Zhang, G.Y. Yang, and H.Z. Zhao, J. Supercrit. Fluids 30 (2004) p. 89.

    Article  CAS  Google Scholar 

  72. M.C. McLeod, M. Anand, C.L. Kitchens, and C.B. Roberts, Nano Lett. 5 (2005) p. 461.

    Article  CAS  Google Scholar 

  73. T. Hanrath and B.A. Korgel, Adv. Mater. 15 (2003) p. 437.

    Article  CAS  Google Scholar 

  74. J.D. Holmes, K.P. Johnston, R.C. Doty, and B.A. Korgel, Science 287 (2000) p. 1471.

    Article  CAS  Google Scholar 

  75. F.M. Davidson, R. Wiacek, and B.A. Korgel, Chem. Mater. 17 (2005) p. 230.

    Article  CAS  Google Scholar 

  76. F.M. Davidson, A.D. Schricker, R.J. Wiacek, and B.A. Korgel, Adv. Mater. 16 (2004) p. 646.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neil, A., Watkins, J.J. Fabrication of Device Nanostructures Using Supercritical Fluids. MRS Bulletin 30, 967–975 (2005). https://doi.org/10.1557/mrs2005.250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.250

Keywords

Navigation