Skip to main content
Log in

Imprint Materials for Nanoscale Devices

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanoimprint lithography is a potentially low-cost, high-resolution patterning technique, but most of the surrounding development work has been directed toward tool designs and processing techniques. There remains a tremendous opportunity and need to develop new materials for specific nanoimprint applications. This article provides an overview of relevant materials-related development work for nanoimprint lithographic applications. Material requirements for nanoimprint patterning for the sub-45-nm integrated-circuit regime are discussed, along with proposed nanoimprint applications such as imprintable dielectrics, conducting polymers, biocompatible materials, and materials for microfluidic devices. Polymers available for thermal nanoimprint processing and photocurable precursors for ultraviolet-assisted nanoimprint lithography are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, and L. Zhuang, J. Vac. Sci. Technol. B 15 (1997) p. 2897.

    Article  CAS  Google Scholar 

  2. S.Y. Chou, C. Keimel, and J. Gu, Nature 417 (2002) p. 835.

    Article  CAS  Google Scholar 

  3. W. Zhang and S. Y. Chou, Appl. Phys. Lett. 83 (2003) p. 1632.

    Article  CAS  Google Scholar 

  4. B.J. Smith, N.A. Stacey, J.P. Donnelly, D.M. Onsongo, T.C. Bailey, C.J. Mackay, D.J. Resnick, W.J. Dauksher, D.P. Mancini, K.J. Nordquist, S.V. Sreenivasan, S.K. Banerjee, J.G. Ekerdt, and C.G. Willson, Proc. SPIE–Int. Soc. Opt. Eng. 5037 (2003) p. 1029.

    CAS  Google Scholar 

  5. C.A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, and A. Errachid, Microelectron. Eng. 78–79 (2005) p. 695.

    Article  CAS  Google Scholar 

  6. H. Cao, Z. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin, E. Chen, W. Wu, and S.Y. Chou, Appl. Phys. Lett. 81 (2002) p. 174.

    Article  CAS  Google Scholar 

  7. J. Seekamp, S. Zankovych, A.H. Helfer, P. Maury, C.M. Sotomayor-Torres, G. Bottger, C. Liguda, M. Eich, B. Heidari, L. Montelius, and J. Ahopelto, Nanotechnology 13 (2002) p. 581.

    Article  CAS  Google Scholar 

  8. Y. Huang, G.T. Paloczi, A. Yariv, C. Zeng, and L.R. Dalton, J. Phys. Chem. B. 108 (2004) p. 8606.

    Article  CAS  Google Scholar 

  9. C.-S. Kee, S.-P. Han, K.B. Yoon, C.-G. Choi, H.K. Sung, S.S. Oh, H.Y. Park, S. Park, and H. Schift, Appl. Phys. Lett. 86 051101/1 (2005).

    Article  CAS  Google Scholar 

  10. C.A. Mills, J. Escarre, E. Engel, E. Martinez, A. Errachid, J. Bertomeu, J. Andreu, J.A. Planell, and J. Samitier, Nanotechnology 16 (2005) p. 369–375.

    Article  CAS  Google Scholar 

  11. B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, and G.M. Whitesides, Chem. Rev. 105 (2005) p. 1171.

    Article  CAS  Google Scholar 

  12. L.J. Guo, J. Phys. D: Appl. Phys. 37 (2004) p. R123.

    Article  CAS  Google Scholar 

  13. F. Hua, Y. Sun, A. Gaur, M.A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J.A. Rogers, and A. Shim, Nano Lett. 4 (2004) p. 2467.

    Article  CAS  Google Scholar 

  14. H.-C. Scheer and H. Schulz, Microelectron. Eng. 56 (2001) p. 311.

    Article  CAS  Google Scholar 

  15. F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, J. Vac. Sci. Technol. B 22 (2004) p. 3318.

    Article  CAS  Google Scholar 

  16. Y. Xia and G.M. Whitesides, Annu. Rev. Mater. Sci. 28 (1998) p. 153.

    Article  CAS  Google Scholar 

  17. J.A. Rogers and R.G. Nuzzo, Mater. Today 8 (2005) p. 50.

    Article  CAS  Google Scholar 

  18. M. Colburn, S. Johnson, M. Stewart, S. Damle, T.C. Bailey, B. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J. Ekerdt, and C.G. Willson, Proc. SPIE–Int. Soc. Opt. Eng. 3676 (1999) p. 379.

    CAS  Google Scholar 

  19. M.D. Stewart, S.C. Johnson, S.V. Sreenivasan, D.J. Resnick, and C.G. Willson, J. Microlith., Microfab., Microsyst. 4 (2005) p. 011002.

    Google Scholar 

  20. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Appl. Phys. Lett. 67 (1995) p. 3114.

    Article  CAS  Google Scholar 

  21. C. Chao and L.J. Guo, J. Vac. Sci. Technol. B 20 (2002) p. 2086.

    Article  CAS  Google Scholar 

  22. T. Ohtake, H.-I. Nakamatsu, S. Matsui, H. Tabata, and T. Kawai, J. Vac. Sci. Technol. B 22 (2004) p. 3275.

    Article  CAS  Google Scholar 

  23. C. Gourgon, C. Perret, and G. Micouin, Microelectron. Eng. 61–62 (2002) p. 385.

    Article  Google Scholar 

  24. K. Pfeiffer, M. Fink, G. Gruetzner, G. Bleidiessel, H. Schulz, and H. Scheer, Microelectron. Eng. 57–58 (2001) p. 381.

    Article  Google Scholar 

  25. X. Cheng and L.J. Guo, Microelectron. Eng. 71 (2004) p. 288.

    Article  CAS  Google Scholar 

  26. T. Makela, T. Haatainen, J. Ahopelto, and H. Isotalo, J. Vac. Sci. Technol. B 19 (2001) p. 487.

    Article  CAS  Google Scholar 

  27. M. Behl, J. Seekamp, S. Zankovych, C.M.S. Torres, R. Zentel, and J. Ahopelto, Adv. Mater. 14 (2002) p. 588.

    Article  CAS  Google Scholar 

  28. J. Wang, X. Sun, L. Chen, and S.Y. Chou, Appl. Phys. Lett. 75 (1999) p. 2767.

    Article  CAS  Google Scholar 

  29. Ch. Finder, M. Beck, J. Seekamp, K. Pfeiffer, P. Carlberg, I. Maximov, F. Reuther, E.L. Sarwe, S. Zankovych, J. Ahopelto, L. Montelius, C. Mayer, and C. M. Sotomayor Torres, Microelectron. Eng. 67–68 (2003) p. 623.

    Article  CAS  Google Scholar 

  30. H.-W. Li and W.T.S. Huck, Nano Lett. 4 (2004) p. 1633.

    Article  CAS  Google Scholar 

  31. J.Y. Cheng, C.A. Ross, E.L. Thomas, H.I. Smith, and G.J. Vancso, Adv. Mater. 15 (2003) p. 1599.

    Article  CAS  Google Scholar 

  32. H. Schulz, H.-C. Scheer, T. Hoffman, C.M. Sotomayor Torres, K. Pfeiffer, G. Bleidiessel, G. Grutzner, Ch. Cardinuad, F. Gaboriau, M.-C. Peignon, J. Ahopelto, and B. Heidari, J. Vac. Sci. Technol. B 18 (2000) p. 1861.

    Article  CAS  Google Scholar 

  33. Y. Igaku, S. Matsui, H. Ishigaki, J.-I. Fujita, M. Ishida, Y. Ochiai, H. Namatsu, M. Komuro, and H. Hiroshima, Jpn. J. Appl. Phys. 41 (2002) p. 4198.

    Article  CAS  Google Scholar 

  34. D. Pisignano, L. Persano, M.F. Raganato, P. Visconti, R. Cingolani, G. Barbarela, L. Favaretto, and G. Gigli, Adv. Mater. 16 (2004) p. 525.

    Article  CAS  Google Scholar 

  35. J. Haisma, M. Verheijen, K. van den Heuvel, and J. van den Berg, J. Vac. Sci. Technol. B 14 (1996) p. 4124.

    Article  CAS  Google Scholar 

  36. M. Colburn, B.J. Choi, S.V. Sreenivasan, R.T. Bonnecaze, and C.G. Willson, Microelectron. Eng. 75 (2004) p. 321.

    Article  CAS  Google Scholar 

  37. S. Reddy and R.T. Bonnecaze, Proc. SPIE–Int. Soc. Opt. Eng. 5751 (2005) p. 200.

    CAS  Google Scholar 

  38. K. Dietliker, T. Jung, J. Benkhoff, H. Kura, A. Matsumoto, H. Oka, D. Hristova, G. Gescheidt, and G. Rist, Macromol. Symp. 217 (2004) p. 77.

    Article  CAS  Google Scholar 

  39. J.V. Crivello, J. Ma, F. Jiang, J. Hua, R. Ahn, and R.A. Ortiz, Macromol. Symp. 215 (2004) p. 165.

    Article  CAS  Google Scholar 

  40. M. Colburn, I. Suez, B.J. Choi, M. Meissl, T. Bailey, S.V. Sreenivasan, J.G. Ekerdt, and C.G. Willson, J. Vac. Sci. Technol. B 19 (2001) p. 2685.

    Article  CAS  Google Scholar 

  41. M.D. Dickey and C.G. Willson, PMSE Preprints 90 (2004) p. 24.

    CAS  Google Scholar 

  42. E.K. Kim, N.A. Stacey, B.J. Smith, M.D. Dickey, S.C. Johnson, B.C. Trinque, and C.G. Willson, J. Vac. Sci. Technol. B 22 (2004) p. 131.

    Article  CAS  Google Scholar 

  43. X. Cheng, L.J. Guo, P.-F. Fu, Adv. Mater. 17 (2005) p. 1419.

    Article  CAS  Google Scholar 

  44. J.P. Rolland, R.M. Van Dam, D.A. Schorzman, S.R. Quake, and J.M. DeSimone, J. Am. Chem. Soc. 126 (2004) p. 2322.

    Article  CAS  Google Scholar 

  45. M.B. Chan-Park, Y. Yan, W.K. Neo, W. Zhou, J. Zhang, and C.Y. Yue, Langmuir 19 (2003) p. 4371.

    Article  CAS  Google Scholar 

  46. J.X. Gao, M.B. Chan-Park, D.Z. Xie, Y.H. Yan, W.X. Zhou, B.K.A. Ngoi, and C.Y. Yue, Chem. Mater. 16 (2004) p. 956.

    Article  CAS  Google Scholar 

  47. N.B. Cramer, S.K. Reddy, M. Cole, C. Hoyle, and C.N. Bowman, J. Polym. Sci. A 42 (2004) p. 5817.

    Article  CAS  Google Scholar 

  48. D. Satas and A.A. Tracton, eds., Coatings Technology Handbook (Marcel Dekker, New York, 2001).

  49. M.D. Stewart, J.T. Wetzel, G.M. Schmid, F. Palmieri, E. Thompson, E.K. Kim, D. Wang, K. Sotodeh, K. Jen, S.C. Johnson, J. Hao, M.D. Dickey, Y. Nishimura, R.M. Laine, D.J. Resnick, and C.G. Willson, Proc. SPIE–Int. Soc. Opt. Eng. 5751 (2005) p. 210.

    CAS  Google Scholar 

  50. J. Choi, S.G. Kim, and R.M. Laine, Macromolecules 37 (2004) p. 99.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, M.D., Willson, C.G. Imprint Materials for Nanoscale Devices. MRS Bulletin 30, 947–951 (2005). https://doi.org/10.1557/mrs2005.248

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.248

Keywords

Navigation