Skip to main content
Log in

Polymer Electrolyte Membrane Technology for Fuel Cells

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The concept of using an ion-exchange membrane as an electrolyte separator for polymer electrolyte membrane (PEM) fuel cells was first reported by General Electric in 1955. However, a real breakthrough in PEM fuel cell technology occurred in the mid-1960s after DuPont introduced Nafion®, a perfluorosulfonic acid membrane. Due to their inherent chemical, thermal, and oxidative stability, perfluorosulfonic acid membranes displaced unstable polystyrene sulfonic acid membranes.Today, Nafion® and other related perfluorosulfonic acid membranes are considered to be the state of the art for PEM fuel cell technology. Although perfluorosulfonic acid membrane structures are preferred today, structural improvements are still needed to accommodate the increasing demands of fuel cell systems for specific applications. Higher performance, lower cost, greater durability, better water management, the ability to perform at higher temperatures, and flexibility in operating with a wide range of fuels are some of the challenges that need to be overcome before widespread commercial adoption of the technology can be realized. The present article will highlight the membrane properties relevant to PEM fuel cell systems, the development history of perfluorosulfonic acid membranes, and the current status of R&D activities in PEM technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.T. Grubb, U.S. Patent 2,913,511 (November 17, 1959).

  2. W.T. Grubb and L.W. Niedrach, J. Electrochem. Soc. 107 (1960) p. 131.

    Article  CAS  Google Scholar 

  3. E.J. Cairns, D.L. Douglas, and L.W. Niedrach, AIChE J. 7 (1961) p. 551.

    Article  CAS  Google Scholar 

  4. D.J. Connolly and W.F. Gresham, U.S. Patent 3,282,875 (November 1, 1966).

  5. Chem. Eng. News (August 27, 1973) p. 15.

  6. W.G. Grot, Macromol. Symp. 82 (1994) p. 161.

    Article  CAS  Google Scholar 

  7. A.B. LaConti, M. Hamdan, and R.C. McDonald, in Handbook of Fuel Cells: Fundamentals, Technology, and Applications, Vol. 3, Part 1, Chapter 49, edited by W. Vielstich, H.A. Gasteiger, and A. Lamm (John Wiley & Sons, New York, 2003) p. 647.

    Google Scholar 

  8. A. Eisenberg and H.L. Yeager, eds., Perfluorinated Ionomer Membranes, ACS Symposium Series No. 180 (American Chemical Society, Washington, D.C., 1982).

  9. M. Doyle and G. Rajendran, in Handbook of Fuel Cells: Fundamentals, Technology, and Applications, Vol. 3, Part 1, Chapter 30, edited by W. Vielstich, H.A. Gasteiger, and A. Lamm (John Wiley & Sons, New York, 2003) p. 351.

    Google Scholar 

  10. K.A. Mauritz and R.B. Moore, Chem. Rev. 104 (10) (2004) p. 4535.

    Article  CAS  Google Scholar 

  11. W.G. Grot, G.E. Munn, P.N. Walmsley, “Perfluorinated Ion Exchange Membrane,” presented at the 141st Natl. Meet. Electrochem. Soc., Houston, Texas, May 7–11, 1972.

  12. M. Doyle, M.E. Lewittes, M.G. Roelofs, and S.A. Perusich, J. Phys. Chem. B, 105 (2001) p. 9387.

    Article  CAS  Google Scholar 

  13. R.E. Fernandez, in Polymer Data Handbook (Oxford University Press, 1999) p. 233.

  14. S. Banerjee and D. Curtin, J. Fluorine Chem. 125 (2004) p. 1211.

    Article  CAS  Google Scholar 

  15. W.G. Grot, U.S. Patent 3,770,567 (November 6, 1973).

  16. I. Watanabe, Y. Yamakoshi, H. Miyauchi, S. Tsushima, and M. Fukumoto, U.S. Patent 4,072,793 (February 7, 1978).

  17. W.G. Grot, J.T. Rivers, and R.H. Silva, U.S. Patent 4,469,744 (September 4, 1984).

  18. S. Banerjee, “Fuel cell incorporating a reinforced membrane,” U.S. Patent 5,795,668 (August 18, 1998).

  19. J.A. Kolde, B. Bahar, M.S. Wilson, T.A. Zawodzinski, and S. Gottesfeld, in Proc. of the First Inatl. Symp. on Proton Exchange Membrane Fuel Cells, edited by S. Gottesfeld, G. Halpert, and A. Landgrebe, ECS Proc. Vol. 95–23 (The Electrochemical Society, Pennington, N.J., 1995) p. 193.

    Google Scholar 

  20. T. Ishisaki, K. Umemura, E. Yanagisawa, Y. Kunisa, I. Terada, and M. Yoshitake, in Abstracts, Fuel Cell Seminar (2000) p. 23.

  21. M. Nakao and M. Yoshitake, in Handbook of Fuel Cells: Fundamentals, Technology and Applications, Vol. 3, Part 1, Chapter 31, edited by W. Vielstich, H.A. Gasteiger, and A. Lamm (John Wiley & Sons, New York, 2003) p. 412.

    Google Scholar 

  22. R.F. Savinell, J. Wainright, and M. Litt, 194th Meet. Electrochem. Soc., extended abstracts, No. 1107 (1998).

  23. E. Peled, T. Devdevani, and A. Melman, Electrochem. Solid-State Lett. 1 (1998) p. 210.

    Article  CAS  Google Scholar 

  24. W.G. Grot and G. Rajendran, “Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same,” U.S. Patent 5,919,583 (July 6, 1999).

  25. P.L. Antonucci, A.S. Arico, P. Creti, E. Ramunni, and V. Antonucci, Solid State Lett. 125 (1999) p. 431.

    CAS  Google Scholar 

  26. J.A. Kerres, J. Membr. Sci. 185 (2001) p. 3.

    Article  CAS  Google Scholar 

  27. G. Deluga and B.S. Pivovar, Fourth Intl. Symp. on New Materials for Electrochemical Systems, extended abstracts, Montreal, Canada, July 4–8, 1999, p. 132.

  28. G. Rajendran, presented at Electrochemical Technology for the 21st Century, Clearwater Beach, Fla., Nov. 12–13, 2000.

  29. A. Chapiro, in High Polymers, Vol. XV, edited by H. Mark, C.S. Maxell, and H.W. Melville (Wiley Interscience, London, 1962).

    Google Scholar 

  30. H.P. Brack, H.G. Buhrer, L. Bonorand, and G.G. Scherer, J Mater. Chem. 10 (2000) p. 17.

    Article  Google Scholar 

  31. A.E. Steck, in Proc. First Inatl. Symp. on New Materials for Fuel Cell Systems, edited by O. Savadogo, P.R. Roberge, and T.N. Veziroglu (Montreal, Canada, July 9–13, 1995) p. 74.

    Google Scholar 

  32. A.E. Steck and C. Stone, in Proc. Second Inatl. Symp. on New Materials for Fuel Cell and Modern Battery Systems, edited by O. Savadogo and P.R. Roberge (Ecole Polytechnique de Montreal, Montreal, Canada, 1997) p. 792.

    Google Scholar 

  33. O. Savadogo, J. New Mater. Electrochem. Sys. 1 (1998) p. 47.

    CAS  Google Scholar 

  34. J. Roziere and D.J. Jones, Annu. Rev. Mater. Res. 33 (2003) p. 503.

    Article  CAS  Google Scholar 

  35. A.B. Laconti, Application of Perfluorocarbon Solid Polymer Electrolytes in Fuel Cells and Electrolyzers, ACS Polymer Tropical Workshop on Perfluorinated Ionomer Membranes, Lake Buena Vista, Fla., February 23–26, 1982.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, R.G. Polymer Electrolyte Membrane Technology for Fuel Cells. MRS Bulletin 30, 587–590 (2005). https://doi.org/10.1557/mrs2005.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.165

Keywords

Navigation