Skip to main content

Advertisement

Log in

Biomaterials for Regenerative Medicine

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The following article is based on a presentation given by Samuel I. Stupp of Northwestern University as part of Symposium X—Frontiers of Materials Research on April 13, 2004, at the Materials Research Society Spring Meeting in San Francisco. Materials designed at the molecular and supramolecular scales to interact with cells, biomolecules, and pharmaceuticals will have a profound impact on technologies targeting the regeneration of body parts. Materials science is a great partner to stem cell biology, genomics, and proteomics in crafting the scaffolds that will effectively regenerate tissues lost to trauma, disease, or genetic defects. The repair of humans should be minimally invasive, and thus the best scaffolds would be liquids programmed to create materials inside our bodies. In this regard, self-assembling materials will play a key role in future technologies. This article illustrates how molecules are designed to assemble into cell scaffolds for human repair and provides examples relevant to brain damage, fractures of the skeleton, spinal cord injuries leading to paralysis, and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Anderson, J.A. Burdick, and R. Langer, Science 305 (2004) p. 1923.

    Article  CAS  Google Scholar 

  2. E. Zamir and B. Geiger, J. Cell Sci. 114 (2001) p. 3577.

    CAS  Google Scholar 

  3. E. Cukierman, R. Pankov, D.R. Stevens, and K.M. Yamada, Science 294 (2001) p. 1708.

    Article  CAS  Google Scholar 

  4. K.M. Yamada and B. Geiger, Curr. Opin. Cell Biol. 9 (1997) p. 76.

    Article  CAS  Google Scholar 

  5. R. Derynck and Y.E. Zhang, Nature 425 (2003) p. 577.

    Article  CAS  Google Scholar 

  6. L.L. Hench and J.M. Polak, Science 295 (2002) p. 1014.

    Article  CAS  Google Scholar 

  7. L.G. Griffith and G. Naughton, Science 295 (2002) p. 1009.

    Article  CAS  Google Scholar 

  8. H. Shin, S. Jo, and A.G. Mikos, Biomaterials 24 (2003) p. 4353.

    Article  CAS  Google Scholar 

  9. T. Boontheekul and D.J. Mooney, Curr. Opin. Biotechnol. 14 (2003) p. 559.

    Article  CAS  Google Scholar 

  10. Y. Hirano and D.J. Mooney, Adv. Mater. 16 (2004) p. 17.

    Article  CAS  Google Scholar 

  11. L.J. Chamberlain, I.V. Yannas, H.P. Hsu, G.R. Strichartz, and M. Spector, J. Neurosci. Res. 60 (2000) p. 666.

    Article  CAS  Google Scholar 

  12. M.D. Pierschbacher and E. Ruoshlahti, Nature 309 (1984) p. 30.

    Article  CAS  Google Scholar 

  13. U. Hersel, C. Dahmen, and H. Kessler, Biomaterials 24 (2003) p. 4385.

    Article  CAS  Google Scholar 

  14. G.W. Fussell and S.L. Cooper, Biomaterials 25 (2004) p. 2971.

    Article  CAS  Google Scholar 

  15. E. Smith, J. Bai, C. Oxenford, J. Yang, R. Somayaji, and H. Uludag, J. Polym. Sci. Part A: Polym. Chem. 41 (2003) p. 3989.

    Article  CAS  Google Scholar 

  16. M.N. Yousaf, B.T. Houseman, and M. Mrksich, Proc. Natl. Acad. Sci. USA 98 (2001) p. 5992.

    Article  CAS  Google Scholar 

  17. A.G. Mikos, Y. Bao, L.G. Cima, D.E. Ingber, J.P. Vacanti, and R. Langer, J. Biomed. Mater. Res. 27 (1993) p. 183.

    Article  CAS  Google Scholar 

  18. A.G. Mikos, M.D. Lyman, L.E. Freed, and R. Langer, Biomaterials 15 (1994) p. 55.

    Article  CAS  Google Scholar 

  19. A.G. Mikos, A.J. Thorsen, L.A. Czerwonka, Y. Bao, R. Langer, D.N. Winslow, and J.P. Vacanti, Polymer 35 (1994) p. 1068.

    Article  CAS  Google Scholar 

  20. D.J. Mooney, D.F. Baldwin, N.P. Suh, L.P. Vacanti, and R. Langer, Biomaterials 17 (1996) p. 1417.

    Article  CAS  Google Scholar 

  21. J.D. Hartgerink, E. Beniash, and S.I. Stupp, Science 294 (2001) p. 1684.

    Article  CAS  Google Scholar 

  22. M.O. Guler, S. Soukasene, J.F. Hulvat, and S.I. Stupp, Nano Lett. 5 (2005) p. 249.

    Article  CAS  Google Scholar 

  23. H.A. Behanna, J. Donners, A.C. Gordon, and S.I. Stupp, J. Am. Chem. Soc. 127 (2005) p. 1193.

    Article  CAS  Google Scholar 

  24. P. Berndt, G.B. Fields, and M. Tirrell, J. Am. Chem. Soc. 117 (1995) p. 9515.

    Article  CAS  Google Scholar 

  25. G.B. Fields, J.L. Lauer, Y. Dori, P. Forns, Y.C. Yu , and M. Tirrell, Biopolymers 47 (1998) p. 143.

    Article  CAS  Google Scholar 

  26. S.G. Zhang, T. Holmes, C. Lockshin, and A. Rich, Proc. Natl. Acad. Sci. USA 90 (1993) p. 3334.

    Article  CAS  Google Scholar 

  27. S.G. Zhang, Nat. Biotechnol. 21 (2003) p. 1171.

    Article  CAS  Google Scholar 

  28. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).

    Google Scholar 

  29. S. Tsonchev, G.C. Schatz, and M.A. Ratner, Nano Lett. 3 (2003) p. 623.

    Article  CAS  Google Scholar 

  30. S. Tsonchev, G.C. Schatz, and M.A. Ratner, J. Phys. Chem. B 108 (2004) p. 8817.

    Article  CAS  Google Scholar 

  31. G.A. Silva, C. Czeisler, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, and S.I. Stupp, Science 303 (2004) p. 1352.

    Article  CAS  Google Scholar 

  32. F.J. Solis, S.I. Stupp, and M. Olvera de la Cruz, J. Chem. Phys. 122 054905 (2005)

    Article  CAS  Google Scholar 

  33. K.L. Niece, J.D. Hartgerink, J.J.J.M. Donnors, and S.I. Stupp, J. Am. Chem. Soc. 125 (2003) p. 7146.

    Article  CAS  Google Scholar 

  34. H. Okano, J. Neurosci. Res. 69 (2002) p. 698.

    Article  CAS  Google Scholar 

  35. A. Storch and J. Schwarz, Curr. Opin. Invest. Drugs 3 (2002) p. 774.

    CAS  Google Scholar 

  36. M.F. Mehler and J.A. Kessler, Arch. Neurol. 56 (1999) p. 780.

    Article  CAS  Google Scholar 

  37. D.W. Pincus, R.R. Goodman, R.A.R. Fraser, M. Nedergaard, and S.A. Goldman, Neurosurgery 42 (1998) p. 858.

    Article  CAS  Google Scholar 

  38. L. Kam, W. Shain, J.N. Turner, and R. Bizios, Biomaterials 22 (2001) p. 1049.

    Article  CAS  Google Scholar 

  39. M. Matsuzawa, F.F. Weight, R.S. Potember, and P. Liesi, Int. J. Dev. Neurosci. 14 (1996) p. 283.

    Article  CAS  Google Scholar 

  40. S.K. Powell, J. Rao, E. Rogue, M. Nomizu, Y. Kuratomi, Y. Yamada, and H.K. Kleinman, J. Neurosci. Res. 61 (2000) p. 302.

    Article  CAS  Google Scholar 

  41. T. Cornish, D.W. Branch, B.C. Wheeler, and J.T. Campanelli, Mol. Cell. Neurosci. 20 (2002) p. 140.

    Article  CAS  Google Scholar 

  42. J.C. Chang, G.J. Brewer, and B.C. Wheeler, Biosens. Bioelectron. 16 (2001) p. 527.

    Article  CAS  Google Scholar 

  43. B.C. Wheeler, J.M. Corey, G.J. Brewer, and D.W. Branch, J. Biomech. Eng., Trans. ASME 121 (1999) p. 73.

    Article  CAS  Google Scholar 

  44. L. Lauer, A. Vogt, C.K. Yeung, W. Knoll, and A. Offenhausser, Biomaterials 23 (2002) p. 3123.

    Article  CAS  Google Scholar 

  45. P. Thiebaud, L. Lauer, W. Knoll, and A. Offenhausser, Biosens. Bioelectron. 17 (2002) p. 87.

    Article  CAS  Google Scholar 

  46. C.K. Yeung, L. Lauer, A. Offenhausser, and W. Knoll, Neurosci. Lett. 301 (2001) p. 147.

    Article  CAS  Google Scholar 

  47. J.A. Kessler, private communication.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stupp, S.I. Biomaterials for Regenerative Medicine. MRS Bulletin 30, 546–553 (2005). https://doi.org/10.1557/mrs2005.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.148

Keywords

Navigation