Skip to main content
Log in

Why Does Concrete Set?: The Nature of Cohesion Forces in Hardened Cement-Based Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Unlike other porous materials such as sandstone, brick, or porous glass, the interatomic bonding continuity of cement-based materials like concrete is far from obvious. When scrutinized at the micro- or nanoscopic level, the continuity of the ionic–covalent bonding in the solid phase is interrupted almost everywhere by water molecules or liquid water films. The same situation is found in set plaster.Yet, plaster and cementitious materials are able to withstand stresses of the same order of magnitude as rocks. Molecular simulation studies and direct-force measurements by atomic force microscopy provide strong arguments for predicting that short- and medium-range surface forces mediated by partially or totally hydrated calcium ions are the essential components of cement strength, with additional contributions from van der Waals and capillary forces. This provides a clue for understanding the nano- and mesostructure of cement-based materials and new levers for improving their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Coulomb, Mém. de Math. de l’Acad. Royale des Sciences 7 (1773) p.343.

    Google Scholar 

  2. R.M. Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, UK, 1992) p.21.

    Google Scholar 

  3. L. Bocquet E. Charlaix S. Ciliberto and J. Crassous, Nature 396 (1998) p.735.

    CAS  Google Scholar 

  4. P. Acker V. Baroghel-Bouny, and S. Garcia in Hydration and Setting, edited by A. Nonat J.C. Mutin, and J. Baron (RILEM, Cachan, France, 2000) p.23.

  5. H.F.W Taylor Cement Chemistry, 2nd ed. (Thomas Telford, London, 1997).

    Google Scholar 

  6. S. Garrault-Gauffinet and A. Nonat J. Cryst. Growth 200 (1999) p.565.

    CAS  Google Scholar 

  7. H. Le Chatelier, Recherches expérimentales sur la constitution des mortiers hydrauliques (Dunod, Paris, 1904).

    Google Scholar 

  8. D.P. Bentz, J. Am. Ceram. Soc. 80 (1997) p. 3.

    CAS  Google Scholar 

  9. T. Vicsek Fractal Growth Phenomena (World Scientific, Singapore, 1992).

    Google Scholar 

  10. T.C. Powers, J.Am. Ceram. Soc. 41 (1958) p.1.

    CAS  Google Scholar 

  11. L. Nachbaur J.C. Mutin, L. Choplin and A. Nonat Cem. Concr. Res. 31 (2001) p.183.

    CAS  Google Scholar 

  12. D. Lootens E. Lécolier, P. Hébraud, and H. Van Damme, Oil Gas Sci. Technol. 59 (2004) p. 31.

    CAS  Google Scholar 

  13. A. Nonat Rev. Fr. Génie Civil 2 (1998) p.759.

    Google Scholar 

  14. D. Viehland J.F. Li, L.J. Yuan, and Z. Xu J.Am. Ceram. Soc. 79 (1996) p.1731.

    CAS  Google Scholar 

  15. X. Zhang W. Chang T. Zhang and C.K. Ong, J.Am. Ceram. Soc. 83 (2000) p.2600.

    CAS  Google Scholar 

  16. For example, see D. Viehland J.F. Li, L.J. Yuan, and Z. Xu J. Am. Ceram. Soc. 79 (1996) p.1731; and I.G. Richardson, Cem. Concr. Res. 29 (1999) p.1131 and references ther

    CAS  Google Scholar 

  17. P. Colombet A.R. Grimmer, H. Zanni and P. Sozzani eds., Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials, Part II (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  18. S.A. Hamid, Z.Kristallogr. 154 (1981) p.189.

    CAS  Google Scholar 

  19. S. Merlino E. Bonaccorsi and T. Armbrumster Eur. J.Mineral. 13 (2001) p.577.

    CAS  Google Scholar 

  20. S. Gauffinet E. Finot E. Lesniewska and A. Nonat C.R. Acad. Sci. Paris Earth & Planetary Sci. 327 (1998) p.231.

    CAS  Google Scholar 

  21. R. Maggion S. Bonnamy P. Levitz and H. Van Damme, in The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability of Concrete, NATO ASI Series E, Vol. 304, edited by H. Jennings J. Kropp and K. Scrivener (Kluwer Academic Publishing, Dordrecht, 1996) p.137.

    CAS  Google Scholar 

  22. H. Van Damme, in Encyclopedia of Surface and Colloid Science, edited by A. Hubbard (Marcel Dekker, New York, 2002) p.1087.

  23. S. Garrault-Gauffinet, E. Finot and A. Nonat in Hydration and Setting, edited by A. Nonat J.C. Mutin and J. Baron (RILEM, Cachan, France, 2000) p.199.

  24. E.M. Gartner, K.E. Kurtis, and P.J.M Monteiro, Cem. Concr. Res. 30 (2000) p.817.

    CAS  Google Scholar 

  25. For example, see H.M. Jennings, J. Hsieh, R. Srinivasan S. Jaiswal M. Garci D. Sohn C. Hinners S. Heppner and C. Neubauer in The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability of Concrete, NATO ASI Series E, Vol.304, edited by H. Jennings J. Kropp and K. Scrivener (Kluwer Academic Publishing, Dordrecht, 1996) p.29.

    CAS  Google Scholar 

  26. H.M. Jennings, Cem. Concr. Res. 30 (2000) p.101.

    CAS  Google Scholar 

  27. D. Winslow J. Bubowski and J.F. Young, Cem. Concr. Res. 25 (1995) p.147.

    CAS  Google Scholar 

  28. A.F. Craievich, J.Appl. Crystallogr. 20 (1987) p.327.

    CAS  Google Scholar 

  29. F. Adenot L. Auvray and J.C. Touray, C.R. Acad. Sci. Parisser. II 317 (1993) p.185.

    CAS  Google Scholar 

  30. A. Plassais M.P. Pomies, N. Lequeux P. Boch J.P. Korb, D. Petit and F. Barberon Magn. Res. Imag. 21 (2003) p.369

    CAS  Google Scholar 

  31. A. Gmira PhD thesis, University of Orléans, 2003.

  32. A. Gmira M. Zabat R. Pellenq and H. Van Damme, Mater. & Struct., Concr. Sci. Eng. 37 (2004) p.3.

    CAS  Google Scholar 

  33. A. Boumiz D. Sorrentino C. Vernet and F.C. Tenoudji, in Hydration and Setting, edited by A. Nonat J.C. Mutin, and J. Baron (RILEM, Cachan, France, 2000) p.295.

  34. L.P. Martin, E.A. Lindgren, M. Rosen and H. Sidhu Mater. Sci. Eng., A 279 (2000) p.87.

    CAS  Google Scholar 

  35. P. Acker in Creep, Shrinkage and Durability Mechanisms of Concrete and Other Quasi-Brittle Materials, edited by Ulm F.-J. Z. Bazant and F. Wittman (Elsevier, Oxford, UK, 2001).

  36. A. Delville and R.J.M Pellenq Mol. Simul. 24 (2000) p.1.

    CAS  Google Scholar 

  37. L. Guldbrand B. Jönsson, H. Wennerström, and P. Linse J.Chem. Phys. 80 (1984) p.2221.

    CAS  Google Scholar 

  38. R. Kjellander and S. Marcelja J.Phys. Chem. 90 (1986) p.1230.

    CAS  Google Scholar 

  39. R. Kjellander S. Marcelja and J.P. Quirk, J. Colloid Interface Sci. 126 (1988) p. 194.

    CAS  Google Scholar 

  40. R.J.M Pellenq J.M. Caillol, and A. Delville J.Phys. Chem B 101 (1997) p.8584.

    Google Scholar 

  41. R.J.M Pellenq A. Delville and H. Van Damme, in Characterization of Porous Solids IV, edited by B. McEnaney T.J. Mays, J. Rouquerol, F. Rodriguez-Reinoso, K.S.W Sing and K.K. Unger (The Royal Society of Chemistry, Cambridge, U.K., 1997) p.596.

  42. S. Lesko E. Lesniewska A. Nonat J.C. Mutin, and J.P. Goudonnet, Ultramicroscopy 86 (2001) p.11.

    CAS  Google Scholar 

  43. L. Gatty S. Bonnamy A. Feylessoufi C. Cli-nard, P. Richard and H. Van Damme, J. Mater. Sci. 36 (2001) p. 4013.

    CAS  Google Scholar 

  44. Results virtually identical to Reference 35 were published during the preparation of this contribution: G. Constantinides and F.J. Ulm, Cem. Concr. Res. 34 (2004) p. 67.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellenq, R.J.M., Van Damme, H. Why Does Concrete Set?: The Nature of Cohesion Forces in Hardened Cement-Based Materials. MRS Bulletin 29, 319–323 (2004). https://doi.org/10.1557/mrs2004.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.97

Keywords

Navigation