Skip to main content
Log in

The Rheology of Cementitious Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The introduction of a new generation of dispersants in concrete allow this material to exhibit self-compacting properties in its fresh state and high durability and mechanical strength in its hardened state. These properties translate into many practical advantages for the construction field.Two of the most important are reducing the ecological impact of this sector of industry and reducing the labor-intensive work associated with placing ordinary concrete by vibration. In this article, it will be shown that knowledge of colloidal science has proven essential in the development of this new generation of dispersants for concrete. Indeed, the polymer molecules used in these dispersants are specifically designed to induce steric repulsion between cement particles, reducing their agglomeration and allowing high workability of fresh concrete prior to setting. While the linkage between interparticle forces and the rheological behavior of cement pastes is still only semiquantitative, recent advances in the modeling of concrete rheology show very promising results in terms of handling aggregates with a wide distribution of particle sizes and shapes. However, accurate modeling requires reliable input on the interaction of the dispersant with the hydrating cement at the molecular level, which is identified as a future research challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K Mehta, in Proc. of the 6th CANMET/ACI International Conference on Fly-Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Vol.1, edited by V.M. Malhotra (American Concrete Institute, Detroit, 1998) p.1.

    CAS  Google Scholar 

  2. V.H. Dodson, Concrete Admixtures (Van Nostrand Reinhold, New York, 1990).

    Google Scholar 

  3. P.C. Aïtcin, C. Jolicoeur and J.G. MacGregor, Concr. Int. 16 (5) (1994) p.45.

    Google Scholar 

  4. V.S. Ramachandran, V.M. Malhotra, C. Jolicoeur, and N. Spiratos Superplasticizers: Properties and Applications in Concrete, CANMET Publication MTL 97-14 (CANMET, Ottawa, 1998).

    Google Scholar 

  5. R.J. Flatt, Cem. Concr. Res. 34 (2004) p.399.

    CAS  Google Scholar 

  6. R.J. Flatt, in Polymers in Particulate Systems: Properties and Applications, edited by V.A. Hackley, P. Somasundaran, and J.A. Lewis (Marcel Dekker, New York, 2001) p.247.

  7. J.A. Lewis, H. Matsuyama G. Kirby S. Morissette, and J.F. Young, J.Am. Ceram. Soc. 83 (2000) p.1905.

    CAS  Google Scholar 

  8. W.A. Ducker, T.J. Senden, and R.M. Pashley, Nature 353 (1991) p.239.

    CAS  Google Scholar 

  9. A. Kauppi P.F.B. Banfill P. Bowen L. Galmiche, Y.F. Houst, F. Lafuma U. Mäder, F. Perche B.G. Petersen, K. Reknes I. Schober A. Siebold and D. Swift in Proc. 11th Int. Congr. on the Chemistry of Cement, Vol. 2, edited by G. Grieve and G. Owen (Cement Association of Canada, Ottawa, 2003) p.528.

  10. A. Kauppi K.M. Andersson, and L. Bergström, “Probing the Effect of Superplasti-cizer Adsorption on the Surface Forces Using the Colloidal Probe AFM Technique,” Cem. Concr. Res. submitted for publication.

  11. R.J. Flatt, Y.F. Houst, P. Bowen H. Hofmann J. Widmer U. Sulser U. Maeder and T.A. Bürge, in Proc. 5th CANMET/ACI Int. Conf. on Superplasticizers and Other Chemical Admixtures in Concrete, edited by V.M. Malhotra (American Concrete Institute, Detroit, 1997) p.743.

  12. H.G. Pedersen, “Particle interactions: An AFM study of colloidal systems,” PhD thesis, Technical University of Denmark, 1998.

    Google Scholar 

  13. H. Van Damme, S. Mansoutre P. Colombet C. Lesaffre and D. Picart C.R. Physique 3 (2002) p.229.

    Google Scholar 

  14. T.C. Powers, The Properties of Fresh Concrete (John Wiley & Sons, New York, 1968).

    Google Scholar 

  15. F. de Larrard, Concrete Mixture Proportioning: A Scientific Approach (E&FN Spon, London, 1999).

    Google Scholar 

  16. D. Bonen and S.L. Sarkar, Cem. Concr. Res. 25 (1995) p.1423.

    CAS  Google Scholar 

  17. V. Fernon A. Vichot N. Le Goanvic, P. Colombet F. Corazza and U. Costa in Proc. 5th CANMET/ACI Int. Conf. on Superplasticizers and Other Chemical Admixtures in Concrete, edited by V.M. Malhotra (American Concrete Institute, Detroit, 1997) p.225.

  18. R.J. Flatt and Y.F. Houst, Cem. Concr. Res. 31 (2001) p.1169.

    CAS  Google Scholar 

  19. K. Yamada and S. Hanehara Concr. Sci. and Eng. 3 (2001) p.135.

    CAS  Google Scholar 

  20. R.J. Flatt, “Towards a Prediction of Super-plasticized Concrete Rheology,” Mater. and Struct. in press.

  21. P.J. Hoogerbrugge and Koelman J.M.V.A. Europhys. Lett. 19 (1992) p.155.

    Google Scholar 

  22. R. Peyret and D. Taylor Computational Methods for Fluid Flow (Springer-Verlag, New York, 1983).

    Google Scholar 

  23. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  24. P. Espanol and P. Warren Europhys. Lett. 30 (1995) p.191.

    CAS  Google Scholar 

  25. C. Marsh G. Backx and M.H. Ernst, Euro-phys. Lett. 38 (1997) p.441.

    Google Scholar 

  26. J.M.V.A. Koelman and P.J. Hoogerbrugge, Europhys. Lett. 21 (1993) p.363.

    CAS  Google Scholar 

  27. E.J. Garboczi, Cem. Conc. Res. 32 (2002) p.1621.

    CAS  Google Scholar 

  28. C. Ferraris and N. Martys J. Res. Natl. Inst. Stand. Technol. 108 (2003) p.229.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flatt, R.J., Martys, N. & Bergström, L. The Rheology of Cementitious Materials. MRS Bulletin 29, 314–318 (2004). https://doi.org/10.1557/mrs2004.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.96

Keywords

Navigation