Skip to main content
Log in

Recent Advances in Methods of Forming Carbon Nanotubes

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Since their discovery, carbon nanotubes, both single-walled and multiwalled, have been a focus in materials research. Fundamental research and application development hinge on high-quality nanotube materials and controlled routes to their organization and assembly. The aum of this article is to provide updated information on recent progress in the synthesis of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354 (1991) p. 56.

    Google Scholar 

  2. A. Thess, R. Lee, P. Nikolaev, H. Dau, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, and R.E. Smalley, Science 273 (1996) p.483.

    Google Scholar 

  3. H.J. Dau, Acc. Chem. Res. 35 (2002) p. 1035.

    Google Scholar 

  4. T.W. Odom, J.-L. Huang, P. Kim, and C.M. Lieber, J. Phys. Chem. B 104 (2001) p. 2794.

    Google Scholar 

  5. R.E. Smalley and B.I. Yakobson, Solid State Commun. 107 (1998) p. 597.

    Google Scholar 

  6. P.M. Ajayan and T.W. Ebbesen, Rep. Prog. Phys. 60 (1997) p. 1025.

    Google Scholar 

  7. Special issue on carbon nanotubes in Appl. Phys. A. 67 (1998) pp. 1–119.

    Google Scholar 

  8. Special issue on carbon nanotubes in Carbon 40 (2002) pp. 1619–1842.

    Google Scholar 

  9. Special issue on carbon nanotubes in Accounts of Chemical Research 35 (2002).

  10. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).

    Google Scholar 

  11. M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Topics in Applied Physics Vol. 80) (Springer-Verlag, New York, 2001).

    Google Scholar 

  12. P. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press, Cambridge, UK, 2001).

    Google Scholar 

  13. R. Sauto, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  14. J. Gavillet, A. Loiseau, C. Journet, F. Willaume, F. Ducastelle, and J.C. Charlier, Phys. Rev. Lett. 87 (2001).

  15. C. Roland, J. Bernholc, C. Brabec, M.B. Nardelli, and A. Mauti, Mol. Simul. 25 (2000) p. 1.

    Google Scholar 

  16. J.C. Charlier, X. Blase, A. De Vita, and R. Car, Appl. Phys. A 68 (1999) p. 267.

    Google Scholar 

  17. Y.H. Lee, S.G. Kim, and D. Tomanek, Phys. Rev. Lett. 78 (1997) p. 2393.

    Google Scholar 

  18. A. Mauti, C.J. Brabec, and J. Bernholc, Phys. Rev. B 55 (1997) p. R6097.

  19. D.S. Bethune, C.H. Kiang, M.S. DeVries, G. Gorman, R. Savoy, and R. Beyers, Nature 363 (1993) p. 605.

    Google Scholar 

  20. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J.E. Fischer, Nature 388 (1997) p. 756.

    Google Scholar 

  21. H.O. Pierson, Handbook of Chemical Vapor Deposition (Noyes Publications, Park Ridge, NJ, 1992).

    Google Scholar 

  22. M.J. Hampden-Smith and T.T. Kodas, Chem. Vap. Deposition 1 (1995) p. 8.

    Google Scholar 

  23. M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spaun, and H.A. Goldberg, Graphite Fibres and Filaments (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  24. M.N.R. Ashfold, P.W. May, C.A. Rego, and N.M. Everitt, Chem. Soc. Rev. 23 (1994) p. 21.

    Google Scholar 

  25. C.E. Snyder, H. Mandeville, H.G. Tennent, L.K. Truesdale, and J.J. Barber, U.S. Patent No. 5,877,110 (March 2, 1999).

    Google Scholar 

  26. G.G. Tibbetts, Appl. Phys. Lett. 42 (1983) p.666.

    Google Scholar 

  27. H.D. Buckley and D.D. Edie, Carbon-Carbon Materials and Composites (Noyes Publications, Park Ridge, NJ, 1993).

    Google Scholar 

  28. M. Endo, A. Oberlin, and T. Koyama, Jpn. J. Appl. Phys. 16 (1977) p. 1519.

    Google Scholar 

  29. H.G. Tennent, U.S. Patent No. 4,663,230 (May 5, 1987).

    Google Scholar 

  30. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. Kroto, and A. Sarkar, Carbon 33 (1995) p. 873.

    Google Scholar 

  31. H. Dau, G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley, Chem. Phys. Lett. 260 (1996) p. 471.

    Google Scholar 

  32. J. Kong, A.M. Cassell, and H.J. Dau, Chem. Phys. Lett. 292 (1998) p. 567.

    Google Scholar 

  33. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, and R.E. Smalley, Chem. Phys. Lett. 296 (1998) p. 195.

    Google Scholar 

  34. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, and H. Dau, Nature 395 (1998) p. 878.

    Google Scholar 

  35. Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, and H.J. Dau, Appl. Phys. Lett. 79 (2001) p. 3155.

    Google Scholar 

  36. M. Su, Y. Li, B. Maynor, A. Buldum, J.P. Lu, and J. Liu, J. Phys. Chem. B 104 (2000) p. 6505.

    Google Scholar 

  37. N.R. Franklin and H. Dau, Adv. Mater. 12 (2000) p. 890.

    Google Scholar 

  38. S. Huang, X. Cau, and J. Liu, J. Am. Chem. Soc. 125 (2003) p. 5636.

    Google Scholar 

  39. C.L. Cheung, A. Kurtz, H. Park, and C.M. Lieber, J. Phys. Chem. B 106 (2002) p. 2429.

    Google Scholar 

  40. Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, and H.J. Dau, J. Phys. Chem. B 105 (2001) p. 11424.

    Google Scholar 

  41. Z.K. Tang, H.D. Sun, J. Wang, J. Chen, and G. Li, Appl. Phys. Lett. 73 (1998) p. 2287.

    Google Scholar 

  42. L. An, J.M. Owens, L.E. McNeil, and J. Liu, J. Am. Chem. Soc. 124 (2002) p. 13688.

    Google Scholar 

  43. A.M. Cassell, J.A. Raymakers, J. Kong, and H.J. Dau, J. Phys. Chem. B 103 (1999) p. 6484.

    Google Scholar 

  44. M. Su, B. Zheng and J. Liu, Chem. Phys. Lett. 322 (2000) p. 321.

    Google Scholar 

  45. J.F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, and J.B. Nagy, Chem. Phys. Lett. 317 (2000) p. 83.

    Google Scholar 

  46. Q.W. Li, H. Yan, Y. Cheng, J. Zhang, and Z.F. Liu, J. Mater. Chem. 12 (2002) p. 1179.

    Google Scholar 

  47. A.R. Harutyunyan, B.K. Pradhan, U.J. Kim, G.G. Chen, and P.C. Eklund, Nano Lett. 2 (2002) p.525.

    Google Scholar 

  48. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, and R.E. Smalley, Chem. Phys. Lett. 313 (1999) p. 91.

    Google Scholar 

  49. M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, and R.E. Smalley, J. Vac. Sci. Technol., A 19 (2001) p. 1800.

    Google Scholar 

  50. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, and A. Sarkar, Carbon 33 (1995) p.873.

    Google Scholar 

  51. R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-Redlich, M. Ruhle, Y.A. Kim, T. Hayashi, and M. Endo, Appl. Phys. Lett. 77 (2000) p. 3385.

    Google Scholar 

  52. H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, and M.S. Dresselhaus, Appl. Phys. Lett. 72 (1998) p. 3282.

    Google Scholar 

  53. B.C. Satishkumar, A. Govindaraj, R. Sen, and C.N.R. Rao, Chem. Phys. Lett. 293 (1998) p. 47.

    Google Scholar 

  54. K. Bladh, L.K.L. Falk, and F. Rohmund, Appl. Phys. A. 70 (2000) p. 317.

    Google Scholar 

  55. L. Ci, S. Xie, D. Tang, X. Yan, Y. Li, Z. Liu, X. Zou, W. Zhou, and G. Wang, Chem. Phys. Lett. 349 (2001) p. 191.

    Google Scholar 

  56. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtau, and P.M. Ajayan, Science 296 (2002) p.884.

    Google Scholar 

  57. B. Zheng, Y. Li, and J. Liu, Appl. Phys. A 74 (2002) p. 345.

    Google Scholar 

  58. B. Kitiyanan, W.E. Alvarez, J.H. Harwell, and D.E. Resasco, Chem. Phys. Lett. 317 (2000) p.497.

    Google Scholar 

  59. W.E. Alvarez, B. Kitiyanan, A. Borgna, and D.E. Resasco, Carbon 39 (2001) p. 547.

    Google Scholar 

  60. S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco and R.B. Weisman, “Narrow (n, m) Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst” (unpublished manuscript), http://www.ou.edu/engineering/nanotube/publications.html (accessed February 2004).

    Google Scholar 

  61. B. Zheng, C. Lu, G. Gu, A. Makarovski, G. Finkelstein, and J. Liu, Nano Lett. 2 (2002) p. 895.

    Google Scholar 

  62. S. Maruyama, R. Kojima, Y. Miyauchia, S. Chiashia, and M. Kohno, Chem. Phys. Lett. 360 (2002) p. 229.

    Google Scholar 

  63. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H.J. Dau, Nature 424 (2003) p. 654.

    Google Scholar 

  64. P.L. McEuen, M.S. Fuhrer, and H.K. Park, IEEE Transactions on Nanotechnology 1 (2002) p. 78.

    Google Scholar 

  65. A. Javey, H. Kim, M. Brink, Q, Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H.J. Dau, Nat. Mater. 1 (2002) p.241.

    Google Scholar 

  66. S. Rosenblatt, Y. Yaush, J. Park, J. Gore, V. Sazonova, and P.L. McEuen, Nano Lett. 2 (2002) p.869.

    Google Scholar 

  67. M.S. Fuhrer, B.M. Kim, T. Durkop, and T. Brintlinger, Nano Lett. 2 (2002) p. 755.

    Google Scholar 

  68. H.C. Choi, W. Kim, W. Wang, and H.J. Dau, J. Phys. Chem. B 106 (2002) p. 12361.

    Google Scholar 

  69. A.M. Cassell, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, and H. Dau, J. Am. Chem. Soc. 121 (1999) p. 7975.

    Google Scholar 

  70. Y. Gogotsi, J.A. Libera, N. Kalashnikov, and M. Yoshimura, Science 290 (2000) p. 317.

    Google Scholar 

  71. M. Kusunoki, T. Suzuki, C. Honjo, T. Hirayama, and N. Shibata, Chem. Phys. Lett. 366 (2002) p. 458.

    Google Scholar 

  72. M. Kusunoki, T. Suzuki, T. Hirayama, N. Shibata, and K. Kaneko, Appl. Phys. Lett. 77 (2000) p. 531.

    Google Scholar 

  73. M. Kusunoki, M. Rokkaku, and T. Suzuki, Appl. Phys. Lett. 71 (1997) p. 2620.

    Google Scholar 

  74. V. Derycke, R. Martel, M. Radosvljevic, F.M.R. Ross, and P. Avouris, Nano Lett. 2 (2002) p.1043.

    Google Scholar 

  75. Technology Opportunity Sheet, “Innovative Manufacturing Procedure For Low Cost And High Quality Carbon Nanotubes,” NASA Goddard Space Flight Center Technology Transfer Program Web site, http://techtransfer.gsfc.nasa.gov/, reference number GSC- 14435-1 (accessed February 2004).

    Google Scholar 

  76. B.Q. Wei, R. Vajtau, Y. Jung, J. Ward, R. Zhang, G. Ramanath, and P.M. Ajayan, Nature 416 (2002) p. 495.

    Google Scholar 

  77. S.M. Huang and A.W.H. Mau, J. Phys. Chem. B 107 (2003) p. 3455.

    Google Scholar 

  78. S.M. Huang and A.H.W. Mau, Appl. Phys. Lett. 82 (2003) p. 796.

    Google Scholar 

  79. K. Matsumoto, S. Kinosita, Y. Gotoh, T. Uchiyama, S. Manalis, and C. Quate, Appl. Phys. Lett. 78 (2001) p. 539.

    Google Scholar 

  80. A.G. Umnov, T. Matshushita, M. Endo, and Y. Takeuchi, Chem. Phys. Lett. 356 (2002) p. 391.

    Google Scholar 

  81. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H.J. Dau, Science 283 (1999) p. 512.

    Google Scholar 

  82. C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim, and C.M. Lieber, Appl. Phys. Lett. 76 (2000) p.3136.

    Google Scholar 

  83. Y.M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D.W. Wang, E. Yenilmez, Q. Wang, J.F. Gibbons, Y. Nishi, and H.J. Dau, Nano Lett. 4 (2004) p. 317.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Fan, S. & Dau, H. Recent Advances in Methods of Forming Carbon Nanotubes. MRS Bulletin 29, 244–250 (2004). https://doi.org/10.1557/mrs2004.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.75

Keywords

Navigation