Skip to main content
Log in

Colloidal Glasses

  • Material Matters
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reviews recent advances in understanding amorphous glassy states in dense colloidal suspensions with or without short-range interparticle attractions. Experiments, theory, and simulation show that two kinds of glassy states are possible, dominated respectively by repulsion and attraction. Under suitable conditions, a small change in the interparticle potential can lead to a transition between these two kinds of colloidal glasses that entails sharp changes in material properties such as the shear modulus. This may provide novel routes for fine-tuning the properties of industrial pastes and slurries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C 17 (1984) p. 5915.

    Google Scholar 

  2. P.N. Pusey and W. van Megen, Nature 320 (1986) p. 340.

    Google Scholar 

  3. P.N. Pusey and W. van Megen, Phys. Rev. Lett. 59 (1987) p. 2083.

    Google Scholar 

  4. The MCT literature is mostly very mathematical. For a less extensively mathematical review, see W. Götze and Sjölander, Rep. Prog. Phys. 55 (1992) p. 241. For brief critical introductions, see K. Kawasaki and B. Kim, J. Phys.: Condens. Matter 14 (2002) p. 2265; and M.E. Cates, “Arrest and Flow of Colloidal Glasses,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/0211066 (accessed December 2003).

  5. W. van Megen and S.M. Underwood, Phys. Rev. E 49 (1994) p. 4206.

    Google Scholar 

  6. E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, and D.A. Weitz, Science 287 (2000) p. 627.

    Google Scholar 

  7. W.C.K. Poon, J.S. Selfe, M.B. Robertson, S.M. Ilett, A.D. Pirie, and P.N. Pusey, J. Phys. II 3 (1993) p. 1075.

    Google Scholar 

  8. For a review of this model system, see W.C.K. Poon, J. Phys.: Condens. Matter 14 (2002) p. R859.

    Google Scholar 

  9. J. Bergenholtz and M. Fuchs, Phys. Rev. E 59 (1999) p. 5706.

    Google Scholar 

  10. L. Fabbian, W. Götze, F. Sciortino, P. Tartaglia, and F. Thiery, Phys. Rev. E 59 (1999) p. R1347; L. Fabbian, W. Götze, F. Sciortino, P. Tartaglia, and F. Thiery, Phys. Rev. E 60 (1999) p. 2430.

    Google Scholar 

  11. K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, A. Moussaïd, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, and W.C.K. Poon, Science 296 (2002) p. 104.

    Google Scholar 

  12. A.M. Puertas, M. Fuchs, and M.E. Cates, Phys. Rev. Lett. 88098301 (2002).

    Google Scholar 

  13. K.N. Pham, S.U. Egelhaaf, P.N. Pusey, and W.C.K. Poon, “Glasses in Hard Spheres with Short-Range Attraction,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/0308250 (accessed December 2003).

    Google Scholar 

  14. T. Eckert and E. Bartsch, Phys. Rev. Lett. 89125701 (2002).

    Google Scholar 

  15. S.H. Chen, W.R. Chen, and F. Mallamace, Science 300 (2003) p. 619.

    Google Scholar 

  16. J. Grandjean and A. Mourchid, in Self-Assembled Nanostructured Materials, edited by Y. Lu, C.J. Brinker, M. Antonietti, and C. Bai (Mater. Res. Soc. Symp. Proc. 775, Warrendale, PA, 2003) p. 231.

  17. K. Dawson, G. Foffi, M. Fuchs, W. Gotze, F. Sciortino, M. Sperl, P. Tartaglia, Th. Voigtmann, and E. Zaccarelli, Phys. Rev. E 63011401 (2001).

    Google Scholar 

  18. F. Sciortino, Nat. Mater. 1 (2002) p. 145.

    Google Scholar 

  19. M. Sperl and W. Gotze, Phys. Rev. E 66011405 (2002).

    Google Scholar 

  20. F. Sciortino, P. Tartaglia, and E. Zaccarelli, “Logarithmic Relaxation in Dense Short-Ranged Attractive Colloids,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/ 0304192 (accessed December 2003).

    Google Scholar 

  21. E. Zaccarelli, G. Foffi, F. Sciortino, and P. Tartaglia, Phys. Rev. Lett. 911083101 (2003).

    Google Scholar 

  22. K.S. Schweizer and E.J. Saltzman, J. Chem. Phys. 119 (2003) p. 1181.

    Google Scholar 

  23. G. Szamel, Phys. Rev. Lett. 90228301 (2003). However, using simulated (rather than analytic) structure factors in standard mode coupling theory gives fg = 0.546; G. Foffi, W. Gotze, F. Sciortino, P. Tartaglia, and Th. Voigtmann, “Alpha-Relaxation Processes in Binary Hard-Sphere Mixtures,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/ 0309007 (accessed December 2003).

    Google Scholar 

  24. E. Donth, J. Phys. 16 (1996) p. 1189; D. Long and F. Lequeux, Eur. Phys. J. E 4 (2001) p. 371; S. Merabia and D. Long, Eur. Phys. J. E 9 (2002) p. 195; J.P. Garrahan and D. Chandler, Phys. Rev. Lett. 89 035704 (2002).

    Google Scholar 

  25. L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, J. Phys.: Condens. Matter 15 (2003) p. S257.

    Google Scholar 

  26. M. Fuchs and M.E. Cates, Faraday Discuss. 123 (2003) p. 267; M. Fuchs and M.E. Cates, Phys. Rev. Lett. 89 248304 (2002).

    Google Scholar 

  27. S.M. Fielding, P. Sollich, and M.E. Cates, J. Rheol. 44 (2000) p. 323.

    Google Scholar 

  28. P.N. Segre, V. Prasad, A.B. Schofield, and D.A. Weitz, Phys. Rev. Lett. 86 (2001) p. 6042.

    Google Scholar 

  29. W.C.K. Poon, Faraday Discuss. 123 (2003) p. 95; K. Kroy, M.E. Cates, and W.C.K. Poon, “A cluster mode-coupling to weak gelation in attractive colloids,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/0310566 (accessed January 200).

    Google Scholar 

  30. E. Stiakakis, D. Vlassopoulos, B. Loppinet, J. Roovers, and G. Meier, Phys. Rev. E 66051804 (2002).

    Google Scholar 

  31. C. Beck, W. Hartl, and R. Hempelmann, J. Chem. Phys. 111 (1999) p. 8209.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poon, W.C.K. Colloidal Glasses. MRS Bulletin 29, 96–99 (2004). https://doi.org/10.1557/mrs2004.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.35

Keywords

Navigation