Skip to main content
Log in

Structural Ordering at the Solid–Liquid Interface

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Many processes in nature and technology are based on the static and dynamic properties of solid–liquid interfaces. Prominent examples are crystal growth, melting, and recrystallization. These processes are strongly affected by the local structure at the solid–liquid interface. Therefore, it is mandatory to understand the change in the structure across the interface. The break of the translational symmetry at the interface induces ordering phenomena, and interactions between the liquid’s molecules and the atomically corrugated solid surface may induce additional ordering effects. In the past decade, new techniques have been developed to investigate the structural properties of such (deeply) buried interfaces in their natural environment. These methods are based on deeply penetrating probes such as brilliant x-ray beams, providing full access to the structure parallel and perpendicular to the interface. Here, we review the results of a number of case studies including liquid metals in contact with Group IV elements (diamond and silicon), where charge transfer effects at the interface may come into play. Another particularly important liquid in our environment is water. The structural properties of water vary widely as it is brought in contact with other materials.We will then proceed from these seemingly simple cases to complex fluids such as colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. van der Veen, Surface Sci. 433–435 (1999) p.1.

    Article  Google Scholar 

  2. B.N.J Persson, Sliding Friction (Springer, New York, 1998).

    Book  Google Scholar 

  3. B. Bushan, J.N. Israelachvili, and U. Landman, Nature 274 (1995) p.607.

    Article  Google Scholar 

  4. M.J. Zwanenburg, “X-ray Waveguiding Studies of Ordering Phenomena in Confined Fluids,” thesis, University of Amsterdam (2001).

    Google Scholar 

  5. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd Ed., (Academic Press, London, 1991).

    Google Scholar 

  6. U. Raviv, P. Laurat, and J. Klein, Nature 413 (2001) p.51.

    Article  CAS  Google Scholar 

  7. C.-Y. Ruan, V.A. Lobastov, F. Vigliotti, S. Chen, and A.H. Zewail, Science 304 (2004) p.80.

    Article  CAS  Google Scholar 

  8. A. Müll, E. Krickemeyer, H. Bögge, M. Schmidtmann, B. Botar, and M.O. Talismanova, Angew. Chem. 115 (2003) p.2131.

    Article  Google Scholar 

  9. W.J. Huisman, J.F. Peters, M.J. Zwanenburg, S. Ade Vries, T.E. Derry, D. Abernathy, and J.F. van der Veen, Nature 390 (1997) p.379.

    Article  CAS  Google Scholar 

  10. D.T. Wasan and A.D. Nikolov, Nature 423 (2003) p.156.

    Article  CAS  Google Scholar 

  11. S. Auer and D. Frenkel, Ann. Rev. Phys. Chem. 55 (2004) p.333.

    Article  CAS  Google Scholar 

  12. M.J. Zwanenburg, J.H.H Bongaerts, J.F. Peters, D.O. Riese, and J.F. van der Veen, Phys. Rev. Lett. 85 (2000) p.5154.

    Article  CAS  Google Scholar 

  13. O.H. Seeck, H. Kim, D.R. Lee, D. Shu, I.D. Kaendler, J.K. Basu, and S.K. Sinha, Europhys. Lett. 60 (2002) p.376.

    Article  CAS  Google Scholar 

  14. C.-J. Yu, A.G. Richter, A. Datta, M.K. Durbin, and P. Dutta, Phys. Rev. Lett. 82 (1999) p.2326.

    Article  CAS  Google Scholar 

  15. See contributions in Synchrotron Radiation News 12 (2) (1999).

  16. P.B. Miranda, L. Xu, Y.R. Shen, and M. Salmeron, Phys. Rev. Lett. 81 (1998) p.5876.

    Article  CAS  Google Scholar 

  17. M.F. Reedijk, J. Arsic, F.F.A Hollander, S.A. de Vries, and E. Vlieg, Phys. Rev. Lett. 90066103 (2003).

    Google Scholar 

  18. P. Fenter, M.T. McBride, G. Srajer, N.C. Sturchio, and D. Bosbach, J. Phys. Chem. B 105 (2001) p.8112.

    Article  Google Scholar 

  19. L. Cheng, P. Fenter, K.L. Nagy, M.L. Schlegel, and N.C. Sturchio, Phys. Rev. Lett. 87156103 (2001).

    Article  CAS  Google Scholar 

  20. M.F. Toney, J.N. Howard, J. Richter, G.L. Borges, J.G. Gordon, O.R. Melroy, D.G. Wiesler, D. Yee, and L. Sorensen, Nature 368 (1994) p.444.

    Article  CAS  Google Scholar 

  21. S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimäki, and A. Snigirev, Phys. Rev. Lett. 92205701 (2004).

    Article  CAS  Google Scholar 

  22. M. Zhao, D.S. Chekmarev, Z.-H. Cai, and S.A. Rice, Phys. Rev. B 56 (1997) p.7033.

    Google Scholar 

  23. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann, and G. Reiter, Nature 408 (2000) p.839.

    Article  CAS  Google Scholar 

  24. Reichert etal., unpublished.

  25. J.N. Israelachvili and P.M. McGuiggan, J.Mater. Res. 5 (1990) p.2223.

    Article  CAS  Google Scholar 

  26. P.N. Pusey and W. van Megen, Nature 320 (1986) p.340.

    Article  CAS  Google Scholar 

  27. H.H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S.O. Kim, and P.F. Nealy, Microelectron. Eng. 67 (2003) p.56.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Veen, J.F., Reichert, H. Structural Ordering at the Solid–Liquid Interface. MRS Bulletin 29, 958–962 (2004). https://doi.org/10.1557/mrs2004.267

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.267

Keywords

Navigation