Skip to main content
Log in

The Influence of Order on the Nucleation Barrier

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

While it is conventionally thought that liquids turn to solids at their “freezing” point, it is often the case that materials must be supercooled (cooled below the freezing temperature) before nucleation actually happens. There is growing evidence that coupled processes, including chemical–structural ordering and orientational–translational ordering, are among the factors that affect exactly when and how nucleation occurs in liquids and crystals. Recent density functional calculations have demonstrated that such coupled routes, which are not incorporated within the one-dimensional framework of the classical theory, can dramatically influence the overall nucleation process. Here, some recently observed cases in metal alloys are discussed, establishing a relationship between developing order in undercooled liquids and the nucleation barrier, the influence of magnetic ordering on nucleation in Co-based melts, and the role of interfacial structure and chemistry on the catalytic efficiency of inoculants for heterogeneous nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Fahrenheit, Philos. Trans. Roy. Soc. London 33 (1724) p.78.

    Article  Google Scholar 

  2. D. Turnbull and R.E. Cech, J. Appl. Phys. 21 (1950) p.804.

    Article  Google Scholar 

  3. D. Turnbull, J.Chem. Phys. 20 (1952) p.411.

    Article  CAS  Google Scholar 

  4. K.F. Kelton, in Solid State Physics, Vol.45, edited by H. Ehrenreich and D. Turnbull (Academic Press, Boston, 1991) p.75.

    Article  CAS  Google Scholar 

  5. K.F. Kelton, Acta Mater. 48 (2000) p.1967.

    Article  CAS  Google Scholar 

  6. K.F. Kelton, J. Non-Cryst. Solids 274 (2000) p.147.

    Article  CAS  Google Scholar 

  7. D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, and A.L. Greer, Int. Mater. Rev. 38 (1993) p.273.

    Article  CAS  Google Scholar 

  8. D.M. Herlach, Annu. Rev. Mater. Sci. 21 (1991) p.23.

    Article  CAS  Google Scholar 

  9. W.-K. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A.J. Rulison, and R.E. Spjut, Rev. Sci. Instrum. 64 (1993) p.2961.

    Article  CAS  Google Scholar 

  10. A.J. Rulison, J.L. Watkins, and B. Zambrano, Rev. Sci. Instrum. 68 (1997) p.2853.

    Article  Google Scholar 

  11. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D.M. Herlach, Phys. Rev. Lett. 89075507 (2002).

    Google Scholar 

  12. D. Holland-Moritz, T. Schenk, R. Bellissent, V. Simonet, K. Funakoshi, J.M. Merino, T. Buslaps, and S. Reutzel, J. Non-Cryst. Solids 312–314 (2002) p.47.

    Article  Google Scholar 

  13. K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T. Rathz, J. Rogers, M.B. Robinson, and D. Robinson, Phys. Rev. Lett. 90195504 (2003).

    Article  CAS  Google Scholar 

  14. C. Nothoff, H. Franz, M. Hanfland, D.M. Herlach, D. Holland-Moritz, and W. Petry, Rev. Sci. Instrum. 71 (2000) p.3791.

    Article  Google Scholar 

  15. C. Nothoff, B. Feuerbacher, H. Franz, D.M. Herlach, and D. Holland-Moritz, Phys. Rev. Lett. 86 (2001) p.1038.

    Article  Google Scholar 

  16. F.C. Frank, Proc. Royal Soc. London, A 215 (1952) p.43.

    Google Scholar 

  17. S. Sachdev and D.R. Nelson, Phys. Rev. Lett. 53 (1984) p.1947.

    Article  CAS  Google Scholar 

  18. N. Jakse and A. Pasturel, Phys. Rev. Lett. 91195501 (2003).

    Article  Google Scholar 

  19. G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, and D. Robinson, Phys. Rev. Lett. 9337802 (2004).

    Article  CAS  Google Scholar 

  20. A. Di Cicco, A. Trapananti, S. Faggioni, and A. Filipponi, Phys. Rev. Lett. 91135505 (2003).

    Article  Google Scholar 

  21. R.G. Hennig, M. Mihalkovic, K.F. Kelton, and C.L. Henley, Phys. Rev. B. 67134202 (2003).

    Article  Google Scholar 

  22. T. Schenk, V. Simonet, D. Holland-Moritz, R. Bellissent, T. Hansen, P. Convert, and D.M. Herlach, Europhys. Lett. 65 (2004) p.34.

    Article  CAS  Google Scholar 

  23. F. Spaepen, Acta Metall. 23 (1975) p.729.

    Article  CAS  Google Scholar 

  24. F. Spaepen and R.B. Meyer, Scripta Metall. 10 (1976) p.257.

    Article  Google Scholar 

  25. D. Holland-Moritz, Int. J. Non-Equilib. Process. 11 (1998) p.169.

    CAS  Google Scholar 

  26. D. Platzek, C. Nothoff, D.M. Herlach, G. Jacobs, and K. Maier, Appl. Phys. Lett. 65 (1994) p.1723.

    Article  CAS  Google Scholar 

  27. J. Reske, D.M. Herlach, F. Keuser, K. Maier, and D. Platzek, Phys. Rev. Lett. 75 (1995) p. 737.

    Article  CAS  Google Scholar 

  28. D. Herlach, C. Bührer, D.M. Herlach, K. Maier, C. Nothoff, D. Platzek, and J. Reske, Europhys. Lett. 44 (1998) p.98.

    Article  CAS  Google Scholar 

  29. D.M. Herlach, D. Holland-Moritz, T. Schenk, K. Schneider, G. Wilde, O. Boni, J. Fransaer, and F. Spaepen, J. Non-Cryst. Solids 250–252 (1999) p.271.

    Article  Google Scholar 

  30. T. Schenk, D. Holland-Moritz, and D.M. Herlach, Europhys. Lett. 50 (2000) p.402.

    Article  CAS  Google Scholar 

  31. T. Albrecht, C. Bührer, M. Fgähnle, K. Maier, D. Platzek, and J. Reske, Appl. Phys. A. 65 (1997) p.215.

    Article  CAS  Google Scholar 

  32. J. Schade, A. McLean, and W.A. Miller, in Undercooled Alloy Phases, edited by E.W. Collings and C.C. Koch (Metallurgical Society of AIME, Warrendale, PA, 1986) p.233.

  33. T. Volkmann, G. Wilde, R. Willnecker, and D.M. Herlach, J.Appl. Phys. 83 (1998) p.3028.

    Article  CAS  Google Scholar 

  34. D. Holland-Moritz and F. Spaepen, Philos. Mag. 84 (2004) p.957.

    Article  CAS  Google Scholar 

  35. R. Willnecker, D.M. Herlach, and B. Feuer-bacher, Mat. Sci. Eng. 98 (1998) p.85.

    Article  Google Scholar 

  36. R.E. Cech and D. Turnbull, J. Metals 191 (1951) p.242.

    Google Scholar 

  37. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow, Acta Mater. 48 (2000) p. 2823.

    Article  CAS  Google Scholar 

  38. K.E. Zachariassen and E. Kristiansen, Cryobiol. 41 (2000) p.257.

    Article  CAS  Google Scholar 

  39. J.W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, 1975) p.448.

    Google Scholar 

  40. W.T. Kim and B. Cantor, Acta Metall. Mater. 42 (1994) p.3115.

    Article  CAS  Google Scholar 

  41. E. Schleip, D.M. Herlach, and B. Feuerbacher, Europhys. Lett. 11 (1990) p.751.

    Article  CAS  Google Scholar 

  42. G.P. Jones, in Solidification Processing, edited by J. Beech and H. Jones (Institute of Metals, London, 1987) p.496.

  43. E. Johnson, Science 296 (2002) p.497.

    Article  Google Scholar 

  44. S.E. Donnelly, R.C. Birtcher, C.W. Allen, I. Morrison, K. Furuya, M. Song, K. Mitsuishi, and U. Dahmen, Science 296 (2002) p.507.

    Article  CAS  Google Scholar 

  45. P. Schumacher and A.L. Greer, in Light Metals, edited by W. Hale (The Minerals, Metals and Materials Society, Warrendale, PA, 1996) p.745.

  46. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche, Adv. Eng. Mater. 5 (2003) p.81.

    Article  CAS  Google Scholar 

  47. D.W. Oxtoby, J. Phys.: Condens. Matter. 4 (1992) p.7627.

    Google Scholar 

  48. D.W. Oxtoby, Philos. Trans. R. Soc. London, Ser. A 361 (2003) p.419.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelton, K.F., Greer, A.L., Herlach, D.M. et al. The Influence of Order on the Nucleation Barrier. MRS Bulletin 29, 940–944 (2004). https://doi.org/10.1557/mrs2004.264

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.264

Keywords

Navigation