Skip to main content
Log in

Crystal–Melt Interfaces and Solidification Morphologies in Metals and Alloys

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

When liquids solidify, the interface between a crystal and its melt often forms branching structures (dendrites), just as frost spreads across a window.The development of a quantitative understanding of dendritic evolution continues to present a major theoretical and experimental challenge within the metallurgical community. This article looks at key parameters that describe the interface—excess free energy and mobility—and discusses how these important properties relate to our understanding of crystal growth and other interfacial phenomena such as wetting and spreading of droplets and nucleation of the solid phase from the melt. In particular, two new simulation methods have emerged for computing the interfacial free energy and its anisotropy: the cleaving technique and the capillary fluctuation method. These are presented, along with methods for extracting the kinetic coefficient and a comparison of the results to several theories of crystal growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Langer in Chance and Matter: Lectures on the Theory of Pattern Formation, edited by J. Souletie, J. Vannimenus, and R. Stora (Les Houches, North-Holland, Amsterdam, 1987) p.629.

  2. D. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37 (1988) p.255.

    Article  Google Scholar 

  3. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Ann. Rev. Mater. Res. 32 (2002) p.163.

    Article  CAS  Google Scholar 

  4. M. Muschol, D. Liu, and H.Z. Cummins, Phys. Rev`. A 46 (1992) p.1038.

    Article  Google Scholar 

  5. M.E. Glicksman and N.B. Singh, J. Cryst. Growth 98 (1989) p.277.

    Article  CAS  Google Scholar 

  6. K. Koo, R. Ananth, and W.N. Gill, Phys. Rev. A 441 (1991) p.3782.

    Article  Google Scholar 

  7. R.E. Napolitano, S. Liu, and R. Trivedi, Inter. Sci. 10 (2002) p.217.

    CAS  Google Scholar 

  8. S. Liu, R.E. Napolitano, and R. Trivedi, Acta. Mater. 49 (2001) p.4271.

    Article  CAS  Google Scholar 

  9. R.E. Napolitano and S. Liu, Phys. Rev. B (2004) in press.

    Google Scholar 

  10. J.Q. Broughton and G.H. Gilmer, J. Chem. Phys. 84 (1986) p.5759.

    Article  CAS  Google Scholar 

  11. R.L. Davidchack and B.B. Laird, Phys. Rev. Lett. 85 (2000) p.4751.

    Article  CAS  Google Scholar 

  12. R.L. Davidchack and B.B. Laird, J. Chem. Phys. 118 (2003) p.7651.

    Article  CAS  Google Scholar 

  13. J.J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86 (2001) p.5530.

    Article  CAS  Google Scholar 

  14. J.J. Hoyt, M. Asta, and A. Karma, Mater. Sci. Eng., R 41 (2003) p.121.

    Article  CAS  Google Scholar 

  15. M. Asta, J.J. Hoyt, and A. Karma, Phys. Rev. B 66100101 (2002).

    Article  Google Scholar 

  16. J.J. Hoyt and M. Asta, Phys. Rev. B 65214106 (2002).

    Article  Google Scholar 

  17. J.R. Morris, Phys. Rev. B 66144104 (2002).

    Article  Google Scholar 

  18. D.Y. Sun, M. Asta, J.J. Hoyt, M.I. Mendelev, and D.J. Srolovitz, Phys. Rev. B 69020102 (2004).

    Google Scholar 

  19. D.Y. Sun, M. Asta, and J.J. Hoyt, unpublished.

  20. J.R. Morris, J.Chem. Phys. 119 (2003) p.3920.

    Article  CAS  Google Scholar 

  21. D.H. Turnbull, J. Appl. Phys. 21 (1950) p.1022.

    Article  CAS  Google Scholar 

  22. F. Spaepen, Acta Metall. 23 (1975) p.729.

    Article  CAS  Google Scholar 

  23. F. Spaepen and R.B. Meyer, Scripta Metall. 10 (1976) p.257.

    Article  Google Scholar 

  24. C.V. Thompson, PhD thesis, Harvard University, 1979.

  25. G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry, Philos. Mag. A 75 (1997) p.713.

    Article  Google Scholar 

  26. S.M. Foiles, Phys. Rev. B 32 (1985) p.7685.

    Article  Google Scholar 

  27. S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33 (1986) p.7983.

    Article  Google Scholar 

  28. F. Ercolessi and J.B. Adams, Europhys. Lett. 26 (1994) p.583.

    Article  CAS  Google Scholar 

  29. A.F. Voter and S.P. Chen in Characterization of Defects in Materials, edited by R.W. Seigel, J.R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, 1978) p.175.

  30. H.S. Lim, C.K. Ong, and F. Ercolessi, Surf. Sci. 269–270 (1992) p.1109.

    Article  Google Scholar 

  31. R.A. Johnson and D.J. Oh, J. Mater. Res. 4 (1989) p.1195.

    Article  CAS  Google Scholar 

  32. S.M. Foiles and J.B. Adams, Phys. Rev. B 41 (1990) p.3316.

    Google Scholar 

  33. M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Philos. Mag. 83 (2003) p.3977.

    Article  CAS  Google Scholar 

  34. S. Henry, T. Minghetti, and M. Rappaz, Acta Mater. 46 (1998) p.6431.

    Article  CAS  Google Scholar 

  35. M.E. Glicksman and R.J. Schaefer, J. Cryst. Growth 1 (1967) p.297.

    Article  CAS  Google Scholar 

  36. G.H. Rodway and J.D. Hunt, J. Cryst. Growth 112 (1991) p.554.

    Article  CAS  Google Scholar 

  37. J.J. Hoyt, M. Asta, and A. Karma, Inter. Sci. 10 (2002) p.181.

    Google Scholar 

  38. H.A. Wilson, Philos. Mag. 50 (1900) p. 238.

    Article  Google Scholar 

  39. J. Frenkel, Phys. Z. Sowjetunion 1 (1932) p.498.

    CAS  Google Scholar 

  40. D. Turnbull and B.G. Bagley, in Treatise on Solid State Chemistry, Vol.5 (Plenum Press, New York, 1975) p.526.

    Google Scholar 

  41. J.Q. Broughton, G.H. Gilmer, and K.A. Jackson, Phys. Rev. Lett. 49 (1982) p.1496.

    Article  CAS  Google Scholar 

  42. S.R. Coriell and D. Turnbull, Acta Metall. 30 (1982) p.2135.

    Article  CAS  Google Scholar 

  43. L.V. Mikheev and A.A. Chernov, J. Cryst. Growth 112 (1991) p.591.

    Article  Google Scholar 

  44. J. Bragard, A. Karma, Y.H. Lee, and M. Plapp, Inter. Sci. 10 (2002) p.119.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyt, J.J., Asta, M., Haxhimali, T. et al. Crystal–Melt Interfaces and Solidification Morphologies in Metals and Alloys. MRS Bulletin 29, 935–939 (2004). https://doi.org/10.1557/mrs2004.263

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.263

Keywords

Navigation