Skip to main content
Log in

Step and Kink Dynamics in Inorganic and Protein Crystallization

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Revived interest in crystal growth from solutions is driven by a variety of demands, including the need to develop an understanding of biomineralization processes in bones, teeth, and shells; and efforts to characterize large optically nonlinear crystals, perfect crystals of proteins, nucleic acids, and complexes such as viruses. Producing and purifying drugs, food, paint, fertilizers, and other polycrystalline materials in industry are other expanding areas that rely on crystal growth from solution. These general practical incentives have activated in-depth studies that revealed new phenomena and raised new fundamental questions: Are thermal fluctuations of steps on a crystal face always fast enough to assure the step propagation at the rate controlled just by molecular incorporation at kinks? Is the Gibbs–Thomson capillarity shift of thermodynamic equilibrium always applicable to evaluate the crystallization driving force of polygonized steps? Is it possible to eliminate the step bunching on a growing crystal face that compromises crystal homogeneity, or at least to mitigate it? In this overview, we will discuss experimental findings and provide state-of-the-art answers to these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Chernov, Modern Crystallography III: Crystal Growth (Springer, Berlin, 1984).

    Book  Google Scholar 

  2. W.K. Burton, N. Cabrera, and F.C. Frank, Phil. Trans. Roy. Soc. London Ser. A 243 (1951) p. 299.

    CAS  Google Scholar 

  3. J. Frenkel, Phys. J.USSR 1 (1932) p.498.

    CAS  Google Scholar 

  4. V.V. Voronkov, Sov. Phys. Crystallogr. 15 (1970) p.8.

    Google Scholar 

  5. V.V. Voronkov, Sov. Phys. Crystallogr. 18 (1973) p.18.

    Google Scholar 

  6. J. Cristoffersen, E. Rostrup, and M.R. Cristof-fersen, J.Cryst. Growth 113 (1991) p.599.

    Article  Google Scholar 

  7. A.A. Chernov, L.N. Rashkovich, I.V. Yamlinski, and N.V. Gvozdev, J. Phys.: Condens. Matter 11 (1999) p.9969.

    CAS  Google Scholar 

  8. C.A. Orme, S. Orme, and J.J. De Yoreo, unpublished.

  9. H.H. Teng, P.M. Dove, C.A. Orme, and J.J. De Yoreo, Science 282 (1998) p.724.

    Article  CAS  Google Scholar 

  10. S.R. Higgins, D. Bosbach, C.M. Eggleston, and K.G. Knauss, J. Phys. Chem. B 104 (2000) p.6978.

    Article  Google Scholar 

  11. A.A. Chernov, Phys. Rep. 288 (1997) p.61.

    Article  CAS  Google Scholar 

  12. Y. Matsuura and A.A. Chernov, Acta Crys-tallogr., Sect D: Biol. Crystallogr. 59 (2003) p.1347.

    Article  Google Scholar 

  13. L.N. Rashkovich, N.V. Gvozdev, M.I. Sil’nikova, I.V. Yaminski, and A.A. Chernov, Cryst. Rep. 46 (2001) p.860.

    Article  Google Scholar 

  14. O. Sohnel, J. Cryst. Growth 57 (1982) p. 101.

    Article  Google Scholar 

  15. J. Crystoffersen, E. Rostrup, and M.R. Cristoffersen, J. Cryst. Growth 113 (1991) p. 599.

    Article  Google Scholar 

  16. L.N. Rashkovich, E.V. Petrova, O.A. Shuston, and T.G. Chernevich, Phys. Solid State 45 (2002) p.400.

    Article  Google Scholar 

  17. A.A. Chernov, J. Cryst. Growth 264 (2004) p.499.

    Article  CAS  Google Scholar 

  18. V.V. Voronkov, Crystals, Growth, Properties, and Applications (Springer, Berlin, 1983) p.75.

    Google Scholar 

  19. A.A. Chernov, J. Mater. Sci. - Mater. Electron. 12 (2001) p. 437.

    Article  CAS  Google Scholar 

  20. E. Bauser, in Handbook of Crystal Growth, Vol. 3b, edited by D.T.J Hurle (Elsevier, Amsterdam, 1994) p.879.

    Google Scholar 

  21. A.A. Chernov, Y.G. Kuznetsov, I.L. Smol’sky, and V.N. Rozhanskii, Sov. Phys. Crys-tallogr. 31 (1986) p.705.

    Google Scholar 

  22. A.A. Chernov, J. Cryst. Growth 118 (1992) p.333.

    Article  Google Scholar 

  23. S.R. Coriell, A.A. Chernov, B.T. Murray, and G.B. McFadden, J. Cryst. Growth 183 (1998) p.669.

    Article  CAS  Google Scholar 

  24. T.N. Thomas, T.A. Land, W.H. Casey, and J.J. De Yoreo, Phys. Rev. Lett. 92216103 (2004).

    Article  CAS  Google Scholar 

  25. V.I. Bespalov, V.I. Bredikhin, V.I. Katsman, V.P. Ershov, and L.A. Lavrov, J.Cryst. Growth 82 (1987) p.776.

    Article  CAS  Google Scholar 

  26. J.J. De Yoreo, Z.V. Peck, N.P. Zaitseva, and B.W. Woods, J. Cryst. Growth 166 (1995) p. 291.

    Article  Google Scholar 

  27. N.A. Booth, A.A. Chernov, and P.G. Vekilov, J.Cryst. Growth 237–239 (2002) p.1818.

    Article  Google Scholar 

  28. N.A. Booth, A.A. Chernov, and P.G. Vekilov, unpublished.

  29. H. Schlichting, Boundary Layer Theory, 7th ed. (McGraw-Hill, N.Y., 1979).

    Google Scholar 

  30. H. Schlichting and K. Gersten, Boundary Layer Theory, 8th ed. (Springer, Berlin, 2000).

    Book  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, A.A., De Yoreo, J.J., Rashkovich, L.N. et al. Step and Kink Dynamics in Inorganic and Protein Crystallization. MRS Bulletin 29, 927–934 (2004). https://doi.org/10.1557/mrs2004.262

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.262

Keywords

Navigation