Skip to main content
Log in

Organic Thin-Film Memory

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Recently, organic nonvolatile memory devices have attracted considerable attention due to their low cost and high performance. This article reviews recent developments in organic nonvolatile memory and describes in detail an organic electrical bistable device (OBD) that has potential for applications. The OBD consists of a tri-layer of organics/metal nanoclusters/organics sandwiched between top and bottom electrodes. A sufficiently high applied bias causes the metal nanoparticle layer to become polarized, resulting in charge storage near the two metal/organic interfaces. This stored charge lowers the resistance of the device and leads to an electrical switching behavior. The ON and OFF states of an OBD differ in their conductivity by several orders of magnitude and show remarkable bistability—once either state is reached, the device tends to remain in that state for a prolonged period of time. More important, the conductivity states of an OBD can be precisely controlled by the application of a positive voltage pulse (to write) or a negative voltage pulse (to erase). Device performance tests show that the OBD is a promising candidate for high-density, low-cost electrically addressable data storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Campbell Scott, Science 304 (2004) p. 62.

    Article  CAS  Google Scholar 

  2. L.P. Ma W.J. Yang S.S. Xie and S.J. Pang Appl. Phys. Lett. 73 (1998) p. 3303

    Article  CAS  Google Scholar 

  3. M.I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Haberle, H. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig, and P. Vettiger, Appl. Phys. Lett. 77 (2000) p. 3299.

    Article  CAS  Google Scholar 

  4. Li-Jie, E. Schreck and K. Dransfeld Appl. Phys. A 53 (1991) p. 457.

    Article  Google Scholar 

  5. R.S. Potember and T.O. Poehler Appl. Phys. Lett. 34 (1979) p. 407.

    Article  Google Scholar 

  6. H. Carchano R. Lacoste and Y. Segui Appl. Phys. Lett. 19 (1971) p. 414.

    Article  CAS  Google Scholar 

  7. H.K. Henish and W.R. Smith Appl. Phys. Lett. 24 (1974) p. 589.

    Article  Google Scholar 

  8. Y. Segui Bui Ai, and H. Carchano J. Appl. Phys. 47 (1976) p. 140.

    Article  CAS  Google Scholar 

  9. H. Carchano R. Lacoste and Y. Segui Appl. Phys. Lett. 19 (1979) p. 414.

    Article  Google Scholar 

  10. T. Oyamada H. Tanaka K. Matsushige H. Sasabe and C. Adachi Appl. Phys. Lett. 83 (2003) p. 1252.

    Article  CAS  Google Scholar 

  11. A. Bandyopadhyay and A.J. Pal Appl. Phys. Lett. 82 (2003) p. 1215.

    Article  CAS  Google Scholar 

  12. S. Moller C. Perlov W. Jackson C. Taussig and S.R. Forrest Nature 426 (2003) p. 166.

    Article  Google Scholar 

  13. S. Moller S.R. Forrest C. Perlov W. Jackson and C. Taussig J. Appl. Phys. 94 (2003) p. 7811.

    Article  CAS  Google Scholar 

  14. L.P. Ma Q.F. Xu and Y. Yang Appl. Phys. Lett. 84 (2004) p. 4908.

    Article  CAS  Google Scholar 

  15. Y. Yang L.P. Ma and J. Liu U.S. Patent Pending, US 01/17206 (2001).

    Google Scholar 

  16. L.P. Ma J. Liu S.M. Pyo and Y. Yang Appl. Phys. Lett. 80 (2002) p. 362.

    Article  CAS  Google Scholar 

  17. L.P. Ma J. Liu and Y. Yang Appl. Phys. Lett. 80 (2002) p. 2997.

    Article  CAS  Google Scholar 

  18. L.P. Ma J. Liu S.M. Pyo Q.F. Xu and Y. Yang Mol. Cryst. Liq. Cryst. 378 (2002) p. 185.

    Article  CAS  Google Scholar 

  19. L.P. Ma S.M. Pyo Q.F. Xu and Y. Yang Appl. Phys. Lett. 82 (2003) p. 1419.

    Article  CAS  Google Scholar 

  20. J. Hubbard Proc. R. Soc. London Ser. A 276 (1963) p. 238

    Article  Google Scholar 

  21. J.H. Wu, L.P. Ma, and Y. Yang, Phys. Rev. B 69 (2004) p. 11531.

    Google Scholar 

  22. L.D. Bozano B.W. Kean V.R. Deline J.R. Salem and J.C. Scott Appl. Phys. Lett. 26 (2004) p. 607.

    Article  Google Scholar 

  23. G. Jabbour private communication.

  24. C.P. Collier G. Mattersteig E.W. Wong Y. Luo K. Beverly J. Sampaio F.M. Raymo J.F. Stoddart and J.R. Heath Science 289 (2000) p. 1172.

    Article  CAS  Google Scholar 

  25. A.R. Pease J.O. Jeppesen J.F. Stoddart Y. Luo C.P. Collier and J.R. Heath Acc. Chem. Res. 34 (2001) p. 433.

    Article  CAS  Google Scholar 

  26. Y. Chen D.A.A. Ohlberg X. Li D.R. Stewart R.S. Williams J.O. Jeppesen K.A. Nielsen J.F. Stoddart D.L. Olynick and E. Anderson Appl. Phys. Lett. 82 (2003) p. 1610.

    Article  CAS  Google Scholar 

  27. M.A. Reed J. Chen A.M. Rawlett D.W. Price and J.M. Tour Appl. Phys. Lett. 78 (2001) p. 3735.

    Article  CAS  Google Scholar 

  28. J.M. Seminario A.G. Zacarias and J.M. Tour J. Am. Chem. Soc. 122 (2000) p. 3015.

    Article  CAS  Google Scholar 

  29. J.M. Seminario A.G. Zacarias and P.A. Derosa J. Phys. Chem. A 105 (2001) p. 791.

    Article  CAS  Google Scholar 

  30. J. Cornil Y. Karzazi and J.L. Bredas J. Am. Chem. Soc. 124 (2002) p. 3516.

    Article  CAS  Google Scholar 

  31. J. Taylor M. Brandbyge and K. Stokbro Phys. Rev. B 68121101 (2003).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ma, L. & Wu, J. Organic Thin-Film Memory. MRS Bulletin 29, 833–837 (2004). https://doi.org/10.1557/mrs2004.237

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.237

Keywords

Navigation