Skip to main content
Log in

Evaporation-Induced Self-Assembly: Functional Nanostructures Made Easy

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The following article is an edited transcript based on the MRS Medalist presentation given by C. Jeffrey Brinker (Sandia National Laboratories and the University of New Mexico) on December 3, 2003, at the Materials Research Society Fall Meeting in Boston. Brinker received the Medal for “his pioneering application of principles of sol-gel chemistry to the self-assembly of functional nanoscale materials.” Nature combines hard and soft materials, often in hierarchical architectures, to obtain synergistic, optimized properties with proven, complex functionalities. Emulating natural designs in robust engineering materials using efficient processing approaches represents a fundamental challenge to materials chemists. This presentation reviews progress on understanding so-called evaporation-induced silica/surfactant self-assembly (EISA) as a simple, general means of preparing porous thin-film nanostructures. Such porous materials are of interest for membranes, low-dielectric-constant (low-k) insulators, and even ‘”nano-valves” that open and close in response to an external stimulus. EISA can also be used to simultaneously organize hydrophilic and hydrophobic precursors into hybrid nanocomposites that are optically or chemically polymerizable, patternable, or adjustable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Whitesides and B. Grzybowski, Science 295 (2002) p. 2418.

    Article  CAS  Google Scholar 

  2. C. Kresge, M. Leonowicz, W. Roth, C. Vartuli, and J. Beck, Nature 359 (1992) p. 710.

    Article  CAS  Google Scholar 

  3. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  4. Y. Lu, R. Ganguli, C. Drewien, M. Anderson, C. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. Huang, and J. Zink, Nature 389 (1997) p. 364.

    Article  CAS  Google Scholar 

  5. H. Fan, Y. Lu, A. Stump, S. Reed, T. Baer, R. Schunk, V. Perez-Luna, G. Lopez, and C. Brinker, Nature 405 (2000) p. 56.

    Article  CAS  Google Scholar 

  6. D. Doshi, N. Huesing, M. Lu, H. Fan, Y. Lu, K. Simmons-Potter, B. Potter, A. Hurd, and C. Brinker, Science 290 (2000) p. 107.

    Article  CAS  Google Scholar 

  7. Y. Lu, H. Fan, A. Stump, T. Ward, T. Rieker, and C. Brinker, Nature 398 (1999) p. 223.

    Article  CAS  Google Scholar 

  8. C. Brinker, Y. Lu, A. Sellinger, and H. Fan, Adv. Mater. 11 (1999) p. 579.

    Article  CAS  Google Scholar 

  9. D. Doshi, A. Gibaud, V. Goletto, M. Lu, H. Gerung, B. Ocko, S. Han, C. Brinker, J. Am. Chem. Soc. 125 (2003) p. 11646.

    Article  CAS  Google Scholar 

  10. D. Doshi, A. Gibaud, N. Liu, D. Sturmayr, A. Malanoski, D. Dunphy, H. Chen, S. Narayanan, A. MacPhee, J. Wang, S. Reed, A. Hurd, F. van Swol, and C. Brinker, J. Phys. Chem. B 107 (2003) p. 7683.

    Article  CAS  Google Scholar 

  11. A. Gibaud, D. Grosso, B. Smarsly, A. Baptiste, J. Bardeau, F. Babonneau, D. Doshi, Z. Chen, C. Brinker, and C. Sanchez, J. Phys. Chem. B 107 (2003) p. 6114.

    Article  CAS  Google Scholar 

  12. A. Sellinger, P. Weiss, A. Nguyen, Y. Lu, R. Assink, W. Gong, and C. Brinker, Nature 394 (1998) p. 256.

    Article  CAS  Google Scholar 

  13. Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A. Burns, D. Sasaki, J. Shelnutt, and C. Brinker, Nature 410 (2001) p. 913.

    Article  CAS  Google Scholar 

  14. Y. Yang, Y. Lu, M. Lu, J. Huang, R. Haddad, G. Xomeritakis, N. Liu, A. Malanoski, D. Sturmayr, H. Fan, D. Sasaki, R. Assink, J. Shelnutt, F. van Swol, G. Lopez, A. Burns, and C. Brinker, J. Am. Chem. Soc. 125 (2003) p. 1269.

    Article  CAS  Google Scholar 

  15. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, San Diego, 1992).

    Google Scholar 

  16. J.N. Israelachvili, D.J. Mitchell, and B.W. Ninham, J. Chem. Soc. 2 (1976) p. 1525.

    Google Scholar 

  17. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, G.P. Lopez, C.J. Brinker, and H. Xu, Science 304 (2004) p. 567.

    Article  CAS  Google Scholar 

  18. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114 (1992) p. 10834.

    Article  CAS  Google Scholar 

  19. C.B. Murray, C.R. Kagan, and M.G. Bawendi, Science 270 (1995) p. 1335.

    Article  CAS  Google Scholar 

  20. S.H. Sun, C.B. Murray, D. Weller, L. Folks, and A. Moser, Science 287 (2000) p. 1989.

    Article  CAS  Google Scholar 

  21. C.B. Murray, C.R. Kagan, and M.G. Bawendi, Science 270 (1995) p. 1335.

    Article  CAS  Google Scholar 

  22. A.P. Alivisatos, K.P. Johnsson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, and P.G. Schultz, Nature 382 (1996) p. 609.

    Article  CAS  Google Scholar 

  23. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, and J.J. Storhoff, Nature 382 (1996) p. 607.

    Article  CAS  Google Scholar 

  24. H. Grabert and M.H. Devoret, Single Charge Tunneling (Plenum Publishers, New York, 1992).

    Book  Google Scholar 

  25. A.A. Middleton and N.S. Winggreen, Phys. Rev. Lett. 71 (1993) p. 3198.

    Article  CAS  Google Scholar 

  26. A.J. Rimberg, T.R. Ho, and J. Clarke, Phys. Rev. Lett. 74 (1995) p. 4714.

    Article  CAS  Google Scholar 

  27. C.T. Black, C.B. Murray, R.L. Sandstrom, and S.H. Sun, Science 290 (2000) p. 1131.

    Article  CAS  Google Scholar 

  28. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, and B.-H. Jo, Nature 404 (2000) p. 588.

    Article  CAS  Google Scholar 

  29. Q. Yu, J.M. Bauer, J.S. Moore, and D.J. Beebe, Appl. Phys. Lett. 78 (2001) p. 2589.

    Article  CAS  Google Scholar 

  30. R.H. Liu, Q. Yu, and D.J. Beebe, J. Microelectromech. Syst. 11 (2002) p. 45.

    Article  CAS  Google Scholar 

  31. G. Garnweitner, B. Smarsly, R. Assink, W. Ruland, E. Bond, and C.J. Brinker, J. Am. Chem. Soc. 125 (2003) p. 5626.

    Article  CAS  Google Scholar 

  32. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, and T. Okano, Nature 374 (1995) p. 240.

    Article  CAS  Google Scholar 

  33. N. Liu, Z. Chen, D. Dunphy, Y. Jiang, R. Assink, and C. Brinker, Angew. Chem., Int. Ed. Engl. 42 (2003) p. 1731.

    Article  CAS  Google Scholar 

  34. N. Liu, D.R. Dunphy, P. Atanassov, S.D. Bunge, Z. Chen, G.P. Lopez, T.J. Boyle, C.J. Brinker, Nanolett. 4 (2004) p. 551.

    Article  CAS  Google Scholar 

  35. N. Liu, D.R. Dunphy, M.A. Rodriguez, S. Singer, C.J. Brinker, Chem. Commun., (2003) p. 1144.

    Google Scholar 

  36. N.K. Mal, M. Fujiwara, and Y. Tanaka, Nature 421 (2003) p. 350.

    Article  CAS  Google Scholar 

  37. H. Rau, in Photochemistry and Photophysics, Vol. II, edited by J. Rabek (CRC Press, Boca Raton, FL, 1990).

  38. A. Natansohn, in Macromolecular Symposia, edited by H. Höcker, W. Guth, B. Jung, I. Meisel, and S. Spiegel (WILEY-VCH, Weinheim, Germany, 1999) p. 1.

  39. K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, and Y. Sakurai, J. Am. Chem. Soc. 120 (1998) p. 12694.

    Article  CAS  Google Scholar 

  40. E. Kokufuta, Y.Q. Zhang, and T. Tanaka, Nature 351 (1991) p. 302.

    Article  Google Scholar 

  41. T. Miyata, N. Asami, and T. Uragami, Nature 399 (1999) p. 766.

    Article  CAS  Google Scholar 

  42. T. Tanaka, I. Nishio, S.T. Sun, and S. Uenonishio, Science 218 (1982) p. 467.

    Article  CAS  Google Scholar 

  43. I.C. Kwon, Y.H. Bae, and S.W. Kim, Nature 354 (1991) p. 291.

    Article  CAS  Google Scholar 

  44. G.S. Kumar and D.C. Neckers, Chem. Rev. 89 (1989) p. 1915.

    Article  CAS  Google Scholar 

  45. M. Ueda, H.-B. Kim, T. Ikeda, and K. Ichimura, Chem. Mater. 4 (1992) p. 1229.

    Article  CAS  Google Scholar 

  46. L.M. Siewierski, W.J. Brittain, S. Petrash, and M.D. Foster, Langmuir 12 (1996) p. 5838.

    Article  CAS  Google Scholar 

  47. M. Ogawa, K. Kurodacd, and J.-I. Moric, Chem. Commun. (24) (2000) p. 2441.

    Article  Google Scholar 

  48. J.G. Victor and J.M. Torkelson, Macromolecules 20 (1987) p. 2241.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinker, C.J. Evaporation-Induced Self-Assembly: Functional Nanostructures Made Easy. MRS Bulletin 29, 631–640 (2004). https://doi.org/10.1557/mrs2004.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.183

Keywords

Navigation