Skip to main content
Log in

Nanoscale Structures: Lability, Length Scales, and Fluctuations

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article is an edited transcript based on the David Turnbull Lecture given by Ellen D. Williams of the University of Maryland on December 2, 2003, at the Materials Research Society Fall Meeting in Boston. Williams received the award for “groundbreaking research on the atomic-scale science of surfaces and for leadership, writing, teaching, and outreach that convey her deep understanding of and enthusiasm for materials research.” This article focuses on the special properties of small structures that provide much of the exciting potential of nanotechnology. One aspect of small structures—their susceptibility to thermal fluctuations—may create or necessitate new ways of exploiting nanostructures. The advent of scanned probe imaging techniques created new opportunities for observing and understanding such structural fluctuations and the related evolution of nanostructure. Direct observations show that it is relatively easy for large numbers of atoms—the kinds of numbers that are present in nanoscale structures— to pick up and move about on the surface cooperatively with substantial impact on nanoto micron-scale structures. Such labile evolution of structure can be predicted quantitatively by using length-scale bridging techniques of statistical mechanics coupled with scanned probe observations of structural and temporal distributions.The same measurements also provide direct information about the stochastic paths of structural fluctuations that can be used outside of the traditional thermodynamic framework. Future work involves moving beyond the classical thermodynamic picture to assess the impact that the stochastic behavior has on the physical properties of individual nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Herring, Phys. Rev. 82 (1951) p. 87.

    Article  CAS  Google Scholar 

  2. C. Herring, in Structure and Properties of Crystal Surfaces, edited by R. Gomer and C.S. Smith (University of Chicago Press, Chicago, 1953) p. 5.

  3. J.W. Cahn, J. de Phys. C6 (suppl.) 43 (1982) p. 199.

    Google Scholar 

  4. E.D. Williams and N.C. Bartelt, Science 251 (1991) p. 393.

    Article  CAS  Google Scholar 

  5. E.D. Williams, R.J. Phaneuf, J. Wei, N.C. Bartelt, and T.L. Einstein, Surf. Sci. 294 (1993) p. 219.

    Article  CAS  Google Scholar 

  6. W.W. Mullins, Philos. Mag. 6 (1961) p. 1313.

    Article  Google Scholar 

  7. W.K. Burton, N. Cabrera, and F.C. Frank, Phil. Trans. R. Soc. London 243A (1951) p. 299.

    Google Scholar 

  8. E.E. Gruber and W.W. Mullins, J. Phys. Chem. Solids 28 (1967) p. 875.

    Article  CAS  Google Scholar 

  9. M.E. Fisher, J. Stat. Phys. 34 (1984) p. 667.

    Article  Google Scholar 

  10. J. Villain, D.R. Grempel, and J. Lapujoulade, J. Phys. F: Metal Phys. 15 (1985) p. 809.

    Article  CAS  Google Scholar 

  11. G. Ehrlich and K. Stolt, Annu. Rev. Phys. Chem. 31 (1980) p. 603.

    Article  CAS  Google Scholar 

  12. B. Binnig and H. Rohrer, Rev. Mod. Phys. 59 (1987) p. 615.

    Article  CAS  Google Scholar 

  13. E. Bauer, Surf. Sci. 299/300 (1994) p. 102.

    Article  Google Scholar 

  14. N.C. Bartelt, R.M. Tromp, and E.D. Williams, Phys. Rev. Lett. 73 (1994) p. 1656.

    Article  CAS  Google Scholar 

  15. K. Yagi, Surf. Sci. Rep. 17 (1993) p. 305.

    Article  CAS  Google Scholar 

  16. N.C. Bartelt, J.L. Goldberg, T.L. Einstein, E.D. Williams, J.C. Heyraud, and J.J. Métois, Phys. Rev. B 48 (1993) p. 15453.

    Article  CAS  Google Scholar 

  17. C. Rottman, M. Wortis, J.C. Heyraud, and J.J. Metois, Phys. Rev. Lett. 52 (1984) p. 1009.

    Article  CAS  Google Scholar 

  18. A. Pavlovska, D. Dobrev, and E. Bauer, Surf. Sci. 326 (1995) p. 101.

    Article  CAS  Google Scholar 

  19. A. Emundts, H.P. Bonzel, P. Wynblatt, K. Thürmer, J. Reutt-Robey, and E.D. Williams, Surf. Sci. 481 (2001) p. 13.

    Article  CAS  Google Scholar 

  20. M. Nowicki, C. Bombis, A. Emundts and H.P. Bonzel, Phys. Rev. B 67 075405 (2003).

    Article  CAS  Google Scholar 

  21. K. Thürmer, J. Reutt-Robey, E.D. Williams, A. Emundts, H. Bonzel, and M. Uwaha, Phys. Rev. Lett. 87 186102 (2001).

    Article  CAS  Google Scholar 

  22. M. Uwaha and P. Nozières, in Morphology and Growth Unit of Crystals, edited by I. Sunagawa (Terra Scientific, Tokyo, 1989) p.17.

  23. P. Nozieres, in Solids Far from Equilibrium, edited by C. Godrèche (Cambridge University Press, Cambridge, 1991) p. 1.

  24. D.G. Vlachos, L.D. Schmidt, and R. Aris, Phys. Rev. B 47 (1993) p. 4896.

    Article  CAS  Google Scholar 

  25. H. Yasunaga and A. Natori, Surf. Sci. Rep. 15 (1992) p. 205.

    Article  Google Scholar 

  26. P.J. Rous, Phys. Rev. B 59 (1999) p. 7719.

    Article  CAS  Google Scholar 

  27. D.-J. Liu and J.D. Weeks, Phys. Rev. B 57 (1998) p. 14891.

    Article  CAS  Google Scholar 

  28. O. Pierre-Louis and T.L. Einstein, Phys. Rev. B 62 (2000) p. 13697.

    Article  CAS  Google Scholar 

  29. P. Nozières, J. de Phys. 48 (1987) p. 1605.

    Article  Google Scholar 

  30. N.C. Bartelt, T.L. Einstein, and E.D. Williams, Surf. Sci. 312 (1994) p. 411.

    Article  CAS  Google Scholar 

  31. S.V. Khare and T.L. Einstein, Phys. Rev. B 57 (1998) p. 4782.

    Article  CAS  Google Scholar 

  32. T. Ihle, C. Misbah, and O. Pierre-Louis, Phys. Rev. B 58 (1998) p. 2289.

    Article  CAS  Google Scholar 

  33. H.-C. Jeong and J.D. Weeks, Surf. Sci. 432 (1999) p. 101.

    Article  CAS  Google Scholar 

  34. H.-C. Jeong and E.D. Williams, Surf. Sci. Rep. 34 (1999) p. 171.

    Article  CAS  Google Scholar 

  35. M. Giesen, Prog. Surf. Sci. 68 (2001) p. 1.

    Article  CAS  Google Scholar 

  36. R.C. Nelson, T.L. Einstein, S.V. Khare, and P.J. Rous, Surf. Sci. 295 (1993) p. 462.

    Article  CAS  Google Scholar 

  37. N.C. Bartelt, T.L. Einstein, and E.D. Williams, Surf. Sci. 276 (1992) p. 308.

    Article  CAS  Google Scholar 

  38. N. Akutsu and Y. Akutsu, J. Phys.: Condens. Matter 11 (1999) p. 6635.

    CAS  Google Scholar 

  39. I. Lyubinetsky, D. Daugherty, H.L. Richards, T.L. Einstein, and E.D. Williams, Surf. Sci. 492 (2001) p. L671.

    Article  CAS  Google Scholar 

  40. T.S. Rahman, A. Kara, and S. Durukanoglu, J. Phys.: Condens. Matter 15 (2003) p. S3197.

    CAS  Google Scholar 

  41. A. Karim, M. Rusanen, I.T. Koponen, T. Ala-Nissila, and T.S. Rahman, Surf. Sci. 554 (2004) p. L113.

    Article  CAS  Google Scholar 

  42. C. Jayaprakash, C. Rottman, and W.F. Saam, Phys. Rev. B 30 (1984) p. 6549.

    Article  CAS  Google Scholar 

  43. V.I. Marchenko and A.Y. Parshin, Sov. Phys. JETP 52 (1980) p. 129.

    Google Scholar 

  44. X.-S. Wang, J.L. Goldberg, N.C. Bartelt, T.L. Einstein, and E.D. Williams, Phys. Rev. Lett. 65 (1990) p. 2430.

    Article  CAS  Google Scholar 

  45. H.L. Richards and T.L. Einstein, “Beyond the Wigner Distribution: Schr dinger Equations and Terrace Width Distributions,” arXiv.org e-print archive, cond-mat/0008089 (accessed August 2004).

    Google Scholar 

  46. M. Uwaha, J. Phys. Soc. Jpn. 57 (1988) p. 1681.

    Article  Google Scholar 

  47. N. Israeli and D. Kandel, Phys. Rev. B 60 (1999) p. 5946.

    Article  CAS  Google Scholar 

  48. M. Degawa et al., in preparation.

  49. M. Giesen, J. Frohn, M. Poensgen, J.F. Wolf, and H. Ibach, J. Vac. Sci. Technol., A 10 (1992) p. 2597.

    Article  CAS  Google Scholar 

  50. L. Kuipers, M.S. Hoogeman, and J.W.M. Frenken, Phys. Rev. Lett. 71 (1993) p. 3517.

    Article  CAS  Google Scholar 

  51. I. Lyubinetsky, D.B. Dougherty, T.L. Einstein, and E.D. Williams, Phys. Rev. B 66 085327 (2002).

    Article  CAS  Google Scholar 

  52. A. Ichimiya, Y. Tanaka, and K. Ishiyama, Phys. Rev. Lett. 76 (1996) p. 4721.

    Article  CAS  Google Scholar 

  53. A. Ichimiya, K. Hayashi, E.D. Williams, T.L. Einstein, M. Uwaha, and K. Watanabe, Phys. Rev. Lett. 84 (2000) p. 3662.

    Article  CAS  Google Scholar 

  54. A. Ichimiya, M. Suzuki, and S. Nishida, Surf. Sci. 493 (2001) p. 555.

    Article  CAS  Google Scholar 

  55. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001).

    Book  Google Scholar 

  56. D.B. Dougherty, I. Lyubinetsky, E.D. Williams, M. Constantin, C. Dasgupta, and S. Das Sarma, Phys. Rev. Lett. 89 136102 (2002).

    Article  CAS  Google Scholar 

  57. D.B. Dougherty, O. Bondarchuk, M. De-¨ogawa, and E.D. Williams, Surf. Sci. 527 (2002) p. L213.

    Article  CAS  Google Scholar 

  58. J. Krug, H. Kallabis, S.N. Majumdar, S.J. Cornell, A.J. Bray, and C. Sire, Phys. Rev. B56 (1997) p. 2702.

    Google Scholar 

  59. O. Bondarchuk, D.B. Dougherty, M. Degawa, E.D. Williams, M. Constantin, C. Dasgupta, and S. DasSarma, “Correlation Time for Step Structural Fluctuations,” arXiv.org e-print archive, cond-mat/0408181 (accessed August 2004).

    Google Scholar 

  60. C. Dasgupta, M. Constantin, S. Das Sarma, and S.N. Majumdar, Phys. Rev. E 69 022101 (2004).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, E.D. Nanoscale Structures: Lability, Length Scales, and Fluctuations. MRS Bulletin 29, 621–629 (2004). https://doi.org/10.1557/mrs2004.182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.182

Keywords

Navigation