Skip to main content
Log in

Nanostructured p–n Junctions for Printable Photovoltaics

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

By controlling the morphology of organic and inorganic semiconductors on a molecular scale, nanoscale p–n junctions can be generated in a bulk composite. Such a composite is typically called a bulk heterojunction composite, which can be considered as one virtual semiconductor combining the electrical and optical properties of the individual components. Solar cells are one attractive application for bulk heterojunction composites. Conjugated polymers or oligomers are the favorite p-type semiconducting class for these composites, while for the n-type semiconductor, inorganic nanoparticles as well as organic molecules have been investigated. Due to the solubility of the individual components, printing techniques are used to fabricate them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Science 270 (1995) p. 1789

  2. M.R. Andersson, and R.H. Friend, Nature 395 (1998) p. 257.

    Article  Google Scholar 

  3. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen, Appl. Phys. Lett. 78 (2001) p. 841.

    Article  CAS  Google Scholar 

  4. P. Schilinsky, C. Waldauf, and C.J. Brabec, Appl. Phys. Lett. 81 (2002) p. 1.

    Article  Google Scholar 

  5. C.J. Brabec, S.E. Shaheen, C. Winder, N. Sariciftci, and P. Denk, Appl. Phys. Lett. 80 (2002) p. 1.

    Google Scholar 

  6. C.B. Murray, D.J. Norris, and M.G. Bawendi, J. Am. Chem. Soc. 115 (1993) p. 8706.

    Article  CAS  Google Scholar 

  7. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295 (2002) p. 2425.

    CAS  Google Scholar 

  8. B. O’Regan and M. Grätzel, Nature 353 (1991) p. 737.

    Google Scholar 

  9. K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, Sol. Energy Mater. Sol. Cells 55 (1998) p. 113.

    CAS  Google Scholar 

  10. A.F. Nogueira, J.R. Durrant, and M.A. De Paoli, Adv. Mater. 13 (2001) p. 826.

    CAS  Google Scholar 

  11. B. O’Regan, F. Lenzmann, R. Muis, and J. Wienke, Chem. Mater. 14 (2002) p. 5023.

    Google Scholar 

  12. J. Krüger, R. Plass, M. Grätzel, and H.-J. Matthieu, Appl. Phys. Lett. 81 (2002) p. 367.

    Google Scholar 

  13. S.E. Shaheen and D.S. Ginley, “Photovoltaucs for the Next Generation,” in Encyclopedia of Nanoscience and Nanotechnology, edited by J.A. Schwarz, C.I. Contescu, and K. Putyera (Marcel Dekker, New York, 2004) in press.

    Google Scholar 

  14. M.T. Rispens, A. Meetsma, R. Rittberger, C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen, Chem. Commun. (2003) p. 2116.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brabec, C.J., Nann, T. & Shaheen, S.E. Nanostructured p–n Junctions for Printable Photovoltaics. MRS Bulletin 29, 43–47 (2004). https://doi.org/10.1557/mrs2004.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.16

Keywords

Navigation