Skip to main content
Log in

Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanotubular structures in the B-C-N ceramic system represent an intriguing alternative to conventional carbon nanotubes. Because of the ability to widely vary the chemical composition of nanotubes within the B-C-N ternary phase diagram and to change the stacking of C-rich or BN-rich tubular shells in multiwalled structures, a wide horizon opens up for tuning nanostructure electrical properties. Pure carbon nanotubes are metals or narrow-bandgap semiconductors, depending on the helicity and diameter, whereas those of BN are insulators with a ~5.0 eV gap independent of these parameters. Thus, the relative B/C/N ratios and/or BN-rich and C-rich domain spatial arrangements, rather than tube helicity and diameter, are assumed to primarily determine the B-C-N nanotube electrical response. This characteristic is highly valuable for nanotechnology: while tube diameter and helicity are currently difficult to control, continuous doping of C with BN, or vice versa, proceeds relatively easily due to the isostructural nature of layered C and BN materials. In this article, recent progress in the synthesis, microscopic analysis, and electrical property measurements of a variety of compound nanotubes in the ceramic B-C-N system is documented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354 (1991) p. 56.

    CAS  Google Scholar 

  2. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, and A. Zettl, Europhys. Lett. 28 (1994) p. 3085.

    Google Scholar 

  3. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269 (1995) p. 966.

    CAS  Google Scholar 

  4. D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Scripta Mater. 44 (2001) p. 1561.

    CAS  Google Scholar 

  5. J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, Nature 391 (1998) p. 59.

    Google Scholar 

  6. O. Stéphan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, and P. Lefin, Science 266 (1994) p. 576.

    Google Scholar 

  7. Y. Miyamoto, A. Rubio, M.L. Cohen, and S. Louie, Phys. Rev. B 50 (1994) p. 4976.

    CAS  Google Scholar 

  8. M. Kawaguchi, Adv. Mater. 9 (1997) p. 615.

    CAS  Google Scholar 

  9. R. Baughman, A.A. Zakhidov, and W.A. de Heer, Science 297 (2002) p. 788.

    Google Scholar 

  10. Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, Science 281 (1998) p. 973.

    CAS  Google Scholar 

  11. O. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, and W.E. Buhro, Chem. Mater. 12 (2000) p. 1808.

    CAS  Google Scholar 

  12. J. Cumings and A. Zettl, Chem. Phys. Lett. 316 (2000) p. 211.

    CAS  Google Scholar 

  13. R.S. Lee, J. Gavilett, M. de la Chapelle, A. Loiseau, J.L. Cochon, D. Pigache, J. Thibault, and F. Willaume, Phys. Rev. B 64 121405 (2001).

  14. M. Terrones, N. Grobert, and H. Terrones, Carbon 40 (2002) p. 1665.

    CAS  Google Scholar 

  15. W.Q. Han, Y. Bando, K. Kurashima, and T. Sato, Appl. Phys. Lett. 73 (1998) p. 3085.

    CAS  Google Scholar 

  16. D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, and T. Sato, Carbon 38 (2000) p. 2017.

    Article  CAS  Google Scholar 

  17. D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, and T. Sato, Appl. Phys. Lett. 77 (2000) p. 1979.

    Article  CAS  Google Scholar 

  18. D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Diamond Relat. Mater. 10 (2001) p. 63.

    Article  CAS  Google Scholar 

  19. D. Golberg, P.S. Dorozhkin, Y. Bando, M. Hasegawa, and Z.-C. Dong, Chem. Phys. Lett. 359 (2002) p. 220.

    Article  CAS  Google Scholar 

  20. P.S. Dorozhkin, D. Golberg, Y. Bando, and Z.-C. Dong, Appl. Phys. Lett. 81 (2002) p. 1083.

    CAS  Google Scholar 

  21. D. Golberg, P.S. Dorozhkin, Y. Bando, Z.-C. Dong, N. Grobert, M. Reyes-Reyes, H. Terrones, and M. Terrones, Appl. Phys. Lett. 82 (2003) p. 1275.

    CAS  Google Scholar 

  22. D. Golberg, P.S. Dorozhkin, Y. Bando, Z.-C. Dong, C.C. Tang, Y. Uemura, N. Grobert, M. Reyes-Reyes, H. Terrones, and M. Terrones, Appl. Phys. A 76 (2003) p. 499.

    CAS  Google Scholar 

  23. Y. Morioshi, Y. Shimizu, and T. Watanabe, Thin Solid Films 390 (2001) p. 26.

    Google Scholar 

  24. Y. Chen, L.T. Chadderton, J.F. Gerald, and J.S. Williams, Appl. Phys. Lett. 74 (1999) p. 2960.

    CAS  Google Scholar 

  25. E. Bengu and L.D. Marks, Phys. Rev. Lett. 86 (2001) p. 2385.

    CAS  Google Scholar 

  26. W.Q. Han and A. Zettl, Appl. Phys. Lett. 81 (2002) p. 5051.

    CAS  Google Scholar 

  27. Y. Bando, K. Ogawa, and D. Golberg, Chem. Phys. Lett. 347 (2001) p. 349.

    CAS  Google Scholar 

  28. D. Golberg, Y. Bando, K. Kurashima, and T. Sato, J. Nanosci. Nanotechnol. 1 (2001) p. 49.

    CAS  Google Scholar 

  29. W. Mickelson, S. Aloni, W.Q. Han, J. Cumings, and A. Zettl, Science 300 (2003) p. 467.

    CAS  Google Scholar 

  30. J. Yu, J. Ahn, S.F. Yoon, Q. Zhang, Rusli, B. Gan, K. Chew, M.B. Yu, X.D. Bau, and E.G. Wang, Appl. Phys. Lett. 77 (2000) p. 1949.

    CAS  Google Scholar 

  31. Ph. Redlich, J. Loeffler, P.M. Ajayan, J. Bill, F. Aldinger, and M. Rühle, Chem. Phys. Lett. 260 (1996) p. 465.

    Google Scholar 

  32. X. Blase, J.-C. Charlier, A. De Vita, and R. Car, Appl. Phys. A 68 (1999) p. 293.

    CAS  Google Scholar 

  33. Y. Sauto, M. Mauda, and T. Matsumoto, Jpn. J. Appl. Phys. Part 1 38 (1999) p. 159.

    Google Scholar 

  34. D.L. Carroll, P. Redlich, X. Blase, J.-C. Charlier, S. Curran, P.M. Ajayan, S. Roth, and M. Rühle, Phys. Rev. Lett. 81 (1998) p. 2332.

    CAS  Google Scholar 

  35. B. Wei, R. Spolenak, P. Kohler-Redlich, M. Rühle, and E. Artz, Appl. Phys. Lett. 74 (1999) p. 3149.

    CAS  Google Scholar 

  36. J. Cumings and A. Zettl, in Proc. 16th Int. Workshop on Electronic Properties of Molecular Nanostructures, edited by H. Kuzmani, J. Fink, M. Mehring, and S. Roth, AIP Conf. Proc. Ser. Vol. 633 (American Institute of Physics, New York, 2001) p. 577.

    Google Scholar 

  37. J.-M. Bonard, H. Kind, T. Stockli, and L.-O. Nilsson, Solid-State Electron. 45 (2001) p. 893.

    CAS  Google Scholar 

  38. R. Gomer, Field Emission and Field Ionization, Chapters 1 and 2 (Harvard University Press, Cambridge, 1961).

    Google Scholar 

  39. J. Cumings, P.G. Collins, and A. Zettl, Nature 406 (2000) p. 586.

    Article  CAS  Google Scholar 

  40. P.G. Collins, M.S. Arnold, and Ph. Avouris, Science 292 (2001) p. 706.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golberg, D., Bando, Y., Dorozhkin, P. et al. Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System. MRS Bulletin 29, 38–42 (2004). https://doi.org/10.1557/mrs2004.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.15

Keywords

Navigation