Skip to main content
Log in

Germanium Nanostructures on Silicon Observed by Scanning Probe Microscopy

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy and noncontact atomic force microscopy have been used to observe germanium growth on Si(001) and Si(111). The atomically resolved images provide invaluable information on heteroepitaxial film growth from the viewpoints of both industrial application and basic science.We briefly review the history of characterizing heteroepitaxial elemental semiconductor systems by means of scanning probe microscopy (SPM), where the Stranski–Krastanov growth mode can be observed on the atomic scale: the detailed phase transition from layer-by-layer growth to three-dimensional cluster growth was elucidated by the use of SPM. In addition, we comment on the potential of SPM for examining the spectroscopic aspects of heteroepitaxial film growth, through the use of SPM tips with well-defined facets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For example, see R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, Cambridge, UK, 1994).

    Book  Google Scholar 

  2. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49 (1982) p. 57.

    Article  Google Scholar 

  3. F.J. Giessibl, Science 267 (1995) p. 68.

    Article  CAS  Google Scholar 

  4. S. Morita, R. Wiesendanger, and E. Meyer, eds., Noncontact Atomic Force Microscopy (Springer- Verlag, Berlin, 2002).

    Google Scholar 

  5. M. Reichling and C. Barth, Phys. Rev. Lett. 83 (1999) p. 768.

    Article  CAS  Google Scholar 

  6. E. Bauer, Rep. Prog. Phys. 57 (1994) p. 895.

    Article  CAS  Google Scholar 

  7. For example, see M. Tomitori, F. Iwawaki, N. Hirano, F. Katsuki, and O. Nishikawa, J. Vac. Sci. Technol., A 8 (1990) p. 222.

    Article  CAS  Google Scholar 

  8. For example, see C. Ratsch and A. Zangill, Surf. Sci. 293 (1993) p. 123.

    Article  CAS  Google Scholar 

  9. B. Voigtländer, Surf. Sci. Rep. 43 (2001) p. 127.

    Article  Google Scholar 

  10. R. Becker and R. Wolkow, in Scanning Tunneling Microscopy, Chapter 5, edited by J.A. Stroscio and W.J. Kaiser (Academic Press, San Diego, 1993) p. 149.

  11. Y.-W. Mo, D.E. Savage, B.S. Swartzentruber, and M.G. Lagally, Phys. Rev. Lett. 65 (1990) p. 1020.

    Article  CAS  Google Scholar 

  12. F. Iwawaki, M. Tomitori, and O. Nishikawa, Surf. Sci. Lett. 253 (1991) p. L411.

    Google Scholar 

  13. F. Iwawaki, M. Tomitori, and O. Nishikawa, Surf. Sci. 266 (1992) p. 285.

    Article  CAS  Google Scholar 

  14. F. Iwawaki, M. Tomitori, and O. Nishikawa, Ultramicroscopy 42-44 (1992) p. 902.

    Article  CAS  Google Scholar 

  15. U. Köhler, O. Jusko, B. Müller, M. Horn-von Hoegen, and M. Pook, Ultramicroscopy 42-44 (1992) p. 832.

    Article  Google Scholar 

  16. M. Tomitori, K. Watanabe, M. Kobayashi, F. Iwawaki, and O. Nishikawa, J. Vac. Sci. Technol., B 12 (1994) p. 2022.

    Article  CAS  Google Scholar 

  17. M. Tomitori, K. Watanabe, M. Kobayashi, and O. Nishikawa, Appl. Surf. Sci. 76/77 (1994) p. 322.

    Article  Google Scholar 

  18. J. Knall and J.B. Pethica, Surf. Sci. 265 (1992) p. 156.

    Article  CAS  Google Scholar 

  19. R.A. Wolkow, Phys. Rev. Lett. 68 (1992) p. 2636.

    Article  CAS  Google Scholar 

  20. M. Tomitori, K. Watanabe, M. Kobayashi, and O. Nishikawa, Surf. Sci. 301 (1994) p. 214.

    Article  CAS  Google Scholar 

  21. Y. Fujikawa, K. Akiyama, T. Nagao, T. Sakurai, M.G. Lagally, T. Hashimoto, Y. Morikawa, and K. Terakura, Phy. Rev. Lett. 88 176101-1 (2002).

  22. T. Hashimoto, Y. Morikawa, Y. Fujikawa, T. Sakurai, M.G. Lagally, and K. Terakura, Surf. Sci. 513 (2002) p. L445.

  23. G. Medeiros-Ribeiro, A.M. Bratkovski, T.I. Kamins, D.A.A. Ohlberg, and R.S. Williams, Science 279 (1998) p. 353.

    Article  Google Scholar 

  24. F.M. Ross, R.M. Tromp, and M.C. Reuter, Science 286 (1999) p. 1931.

    Article  CAS  Google Scholar 

  25. T. Arai and M. Tomitori, Appl. Surf. Sci. 188 (2002) p. 292.

    Article  CAS  Google Scholar 

  26. K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, J. Vac. Sci. Technol., A3 (1985) p. 1502.

    Article  Google Scholar 

  27. T. Arai and M. Tomitori, Jpn. J. Appl. Phys., Part 1 39 (2000) p. 3753.

    Article  CAS  Google Scholar 

  28. T. Arai and M. Tomitori, Appl. Surf. Sci. 157 (2000) p. 207.

    Article  CAS  Google Scholar 

  29. T. Arai and M. Tomitori, Appl. Phys. A 72 (2001) p. S51.

  30. S. Morita and Y. Sugawara, in Nanotechnology and Nano-Interface Controlled Electronic Devices, Chapter 21, edited by M. Iwamoto, K. Kaneko and S. Mashiko (Elsevier, Amsterdam, 2002) p. 431.

  31. M. Kawamura, N. Paul, V. Cherepanov, and B. Voigtländer, Phys. Rev. Lett. 91 096102 (2003).

  32. T. Arai and M. Tomitori, Jpn. J. Appl. Phys., Part 1 36 (1997) p. 3855.

    Article  CAS  Google Scholar 

  33. T. Arai and M. Tomitori, J. Vac. Sci. Technol., B 18 (2000) p. 648.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomitori, M., Arai, T. Germanium Nanostructures on Silicon Observed by Scanning Probe Microscopy. MRS Bulletin 29, 484–487 (2004). https://doi.org/10.1557/mrs2004.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.143

Keywords

Navigation