Skip to main content
Log in

Atomic Force Microscopy of Biological Samples

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The atomic force microscope (AFM) allows biomolecules to be observed and manipulated under native conditions. It produces images with an outstanding signal-to-noise ratio and addresses single molecules while the sample is in a buffer solution. Progress in sample preparation and instrumentation has led to topographs that reveal subnanometer details and the surface dynamics of biomolecules.Tethering single molecules between a support and a retracting AFM tip produces force–extension curves, giving information about the mechanical stability of secondary structural elements. For both imaging and force spectroscopy, the cantilever and its tip are critical: the mechanical properties of the cantilever dictate the force sensitivity and the scanning speed, whereas the tip shape determines the achievable lateral resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Binnig, C.F. Quate, and C. Gerber, Phys. Rev. Lett. 56 (1986) p. 930.

    Article  CAS  Google Scholar 

  2. J. Mou, J. Yang, and Z. Shao, J. Mol. Biol. 248 (1995) p. 507.

    Article  CAS  Google Scholar 

  3. D.J. Müller, M. Amrein, and A. Engel, J. Struct. Biol. 119 (1997) p. 172.

    Article  Google Scholar 

  4. D.M. Czajkowsky, S. Sheng, and Z. Shao, J. Mol. Biol. 276 (1998) p. 325.

    Article  CAS  Google Scholar 

  5. S. Scheuring, F. Reiss-Husson, A. Engel, J.L. Rigaud, and J.L. Ranck, EMBO J. 20 (2001) p. 3029.

    Article  CAS  Google Scholar 

  6. D.J. Müller, D. Fotiadis, S. Scheuring, S.A. Müller, and A. Engel, Biophys. J. 76 (1999) p. 1101.

    Article  Google Scholar 

  7. C. Möller, M. Allen, V. Elings, A. Engel, and D.J. Müller, Biophys. J. 77 (1999) p. 1150.

    Article  Google Scholar 

  8. P.K. Hansma, J.P. Cleveland, M. Radmacher, D.A. Walters, P.E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H.G. Hansma, C.B. Prater, J. Massie, L. Fukunaga, J. Gurley, and V. Elings, Appl. Phys. Lett. 64 (1994) p. 1738.

    Article  CAS  Google Scholar 

  9. W. Han, S.M. Lindsay, M. Dlakic, and R.E. Harrington, Nature 386 (1997) p. 563.

    Article  CAS  Google Scholar 

  10. M.B. Viani, T.E. Schäffer, G.T. Paloczi, L.I. Pietrasanta, B.L. Smith, J.B. Thompson, M. Richter, M. Rief, H.E. Gaub, K.W. Plaxco, A.N. Cleland, H.G. Hansma, and P.K. Hansma, Rev. Sci. Instrum. 70 (1999) p. 4300.

    Article  CAS  Google Scholar 

  11. A. Grant and L. McDonnell, Ultramicroscopy 97 (2003) p. 177.

    Article  CAS  Google Scholar 

  12. A.E. Blaurock and W. Stoeckenius, Nature New Biol. 233 (1971) p. 152.

    Article  CAS  Google Scholar 

  13. D. Fotiadis and A. Engel, Methods Mol. Biol. 242 (2004) p. 291.

    CAS  Google Scholar 

  14. D.J. Müller, J.B. Heymann, F. Oesterhelt, C. Möller, H. Gaub, G. Büldt, and A. Engel, Biochim. Biophys. Acta 1460 (2000) p. 27.

    Article  Google Scholar 

  15. D.J. Müller, G. Büldt, and A. Engel, J. Mol. Biol. 249 (1995) p. 239.

    Article  Google Scholar 

  16. S. Scheuring, D.J. Müller, H. Stahlberg, H.A. Engel, and A. Engel, Eur. Biophys. J. 31 (2002) p. 172.

    Article  CAS  Google Scholar 

  17. D. Fotiadis, Y. Liang, S. Filipek, D.A. Saperstein, A. Engel, and K. Palczewski, Nature 421 (2003) p. 127.

    Article  CAS  Google Scholar 

  18. S. Scheuring, J. Seguin, S. Marco, D. Levy, B. Robert, and J.L. Rigaud, Proc. Natl. Acad. Sci. U.S.A. 100 (2003) p. 1690.

    Article  CAS  Google Scholar 

  19. D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel, and D.J. Müller, Micron 33 (2002) p. 385.

    Article  CAS  Google Scholar 

  20. F.A. Schabert, C. Henn, and A. Engel, Science 268 (1995) p. 92.

    Article  CAS  Google Scholar 

  21. D. Fotiadis, L. Hasler, D.J. Müller, H. Stahlberg, J. Kistler, and A. Engel, J. Mol. Biol. 300 (2000) p. 779.

    Article  CAS  Google Scholar 

  22. D.J. Müller, G.M. Hand, A. Engel, and G.E. Sosinsky, EMBO J. 21 (2002) p. 3598.

    Article  Google Scholar 

  23. D. Fotiadis, D.J. Müller, G. Tsiotis, L. Hasler, P. Tittman, T. Mini, P. Jenö, H. Gross, and A. Engel, J. Mol. Biol. 283 (1998) p. 83.

    Article  CAS  Google Scholar 

  24. C.A. Siebert, P. Qian, D. Fotiadis, A. Engel, C.N. Hunter, and P.A. Bullough, EMBO J. 23 (2004) p. 690.

    Article  CAS  Google Scholar 

  25. D. Fotiadis, P. Qian, A. Philippsen, P.A. Bullough, A. Engel, and C.N. Hunter, J. Biol. Chem. 279 (2004) p. 2063.

    Article  CAS  Google Scholar 

  26. A.F. Oberhauser, P.K. Hansma, M. Carrion-Vazquez, and J.M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) p. 468.

    Article  CAS  Google Scholar 

  27. H. Li, W.A. Linke, A.F. Oberhauser, M. Carrion-Vazquez, J.G. Kerkvliet, H. Lu, P.E. Marszalek, and J.M. Fernandez, Nature 418 (2002) p. 998.

    Article  CAS  Google Scholar 

  28. A.F. Oberhauser, C. Badilla-Fernandez, M. Carrion-Vazquez, and J. M. Fernandez, J. Mol. Biol. 319 (2002) p. 433.

    Article  CAS  Google Scholar 

  29. T.E. Fisher, M. Carrion-Vazquez, A.F. Oberhauser, H. Li, P.E. Marszalek, and J.M. Fernandez, Neuron 27 (2000) p. 435.

    Article  CAS  Google Scholar 

  30. M. Carrion-Vazquez, A.F. Oberhauser, T.E. Fisher, P.E. Marszalek, H. Li, and J.M. Fernandez, Prog. Biophys. Mol. Biol. 74 (2000) p. 63.

    Article  CAS  Google Scholar 

  31. M. Rief, M. Gautel, and H.E. Gaub, Adv. Exp. Med. Biol. 481 (2000) p. 129.

    Article  CAS  Google Scholar 

  32. A. Minajeva, M. Kulke, J.M. Fernandez, and W.A. Linke, Biophys. J. 80 (2001) p. 1442.

    Article  CAS  Google Scholar 

  33. P.M. Williams, S.B. Fowler, R.B. Best, J.L. Toca-Herrera, K.A. Scott, A. Steward, and J. Clarke, Nature 422 (2003) p. 446.

    Article  CAS  Google Scholar 

  34. P.E. Marszalek, H. Lu, H. Li, M. Carrion- Vazquez, A.F. Oberhauser, K. Schulten, and J.M. Fernandez, Nature 402 (1999) p. 100.

    Article  CAS  Google Scholar 

  35. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H.E. Gaub, and D.J. Müller, Science 288 (2000) p. 143.

    Article  CAS  Google Scholar 

  36. D.J. Müller, M. Kessler, F. Oesterhelt, C. Möller, D. Oesterhelt, and H. Gaub, Biophys. J. 83 (2002) p. 3578.

    Article  Google Scholar 

  37. C. Möller, D. Fotiadis, K. Suda, A. Engel, M. Kessler, and D.J. Müller, J. Struct. Biol. 142 (2003) p. 369.

    Article  CAS  Google Scholar 

  38. H. Janovjak, M. Kessler, D. Oesterhelt, H. Gaub, and D.J. Müller, EMBO J. 22 (2003) p. 5220.

    Article  CAS  Google Scholar 

  39. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) p. 12468.

    Article  CAS  Google Scholar 

  40. D.A. Walters, J.P. Cleveland, N.H. Thomson, P.K. Hansma, M.A. Wendman, G. Gurley, and V. Elings, Rev. Sci. Instrum. 67 (1996) p. 3583.

    Article  CAS  Google Scholar 

  41. M.B. Viani, T.E. Schäfer, A. Chand, M. Rief, H. Gaub, and P.K. Hansma, J. Appl. Phys. 86 (1999) p. 2258.

    Article  CAS  Google Scholar 

  42. J.L. Yang, M. Despont, B.W. Hoogenboom, U. Dreschler, P.L.T.M. Frederix, S. Martin, H.J. Hug, P. Vettiger, and A. Engel, in Proc. 17th IEEE Intl. Conf. on Micro Electro Mechanical Systems (MEMS 2004) (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2004) p. 560.

    Google Scholar 

  43. M.B. Viani, L.I. Pietrasanta, J.B. Thompson, A. Chand, I.C. Gebeshuber, J.H. Kindt, M. Richter, H.G. Hansma, and P.K. Hansma, Nat. Struct. Biol. 7 (2000) p. 644.

    Article  CAS  Google Scholar 

  44. B.W. Hoogenboom, P.L.T.M. Frederix, S. Martin, A. Engel, and H.J. Hug (2004) in preparation.

  45. P.L.T.M. Frederix, T. Akiyama, U. Staufer, C. Gerber, D. Fotiadis, D.J. Müller, and A. Engel, Curr. Opin. Chem. Biol. 7 (2003) p. 641.

    Article  CAS  Google Scholar 

  46. T. Akiyama, M.R. Gullo, N.F. de Rooij, U. Staufer, A. Tonin, A. Engel, and P.L.T.M. Frederix, in Proc. 12th Intl. Conf. on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, Vol. 696, edited by P.M. Koenraad and M. Kemerink (American Institute of Physics, Eindhoven, 2003) p. 166.

  47. G. Schurmann, W. Noell, U. Staufer, and N.F. de Rooij, Ultramicroscopy 82 (2000) p. 33.

    Article  CAS  Google Scholar 

  48. M. Stopka, D. Drews, K. Mayr, M. Lacher, W. Ehrfeld, T. Kalkbrenner, M. Graf, V. Sandoghdar, and J. Mlynek, Microelectron. Eng. 53 (2000) p. 183.

    Article  CAS  Google Scholar 

  49. A. Meister, S. Jeney, M. Liley, T. Akiyama, U. Staufer, N.F. de Rooij, and H. Heinzelmann, Microelectron. Eng. 67-68 (2003) p. 2003.

    Article  CAS  Google Scholar 

  50. P.K. Hansma, B. Drake, O. Marti, S.A.C. Gould, and C.B. Prater, Science 243 (1989) p. 641.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederix, P.L.T.M., Hoogenboom, B.W., Fotiadis, D. et al. Atomic Force Microscopy of Biological Samples. MRS Bulletin 29, 449–455 (2004). https://doi.org/10.1557/mrs2004.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.138

Keywords

Navigation