Skip to main content
Log in

Electrical and Spectroscopic Characterization of Molecular Junctions

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The design of future molecular electronic devices requires a firm understanding of the conduction mechanisms that determine their electrical characteristics. Progress toward this goal has been hindered by complications in controlling the exact configuration and makeup of fabricated molecular junctions, thus limiting the availability of quantitative experimental data for developing cohesive theories to model and predict molecular transport. This article summarizes recent research aimed at developing well-controlled systems for comparing molecular conduction and vibrational spectra using crossed-wire and in-wire metal–molecule–metal junctions. Systematic variations in molecular structure and metal–molecule contacts show strong quantitative agreement in device properties, while spectroscopic data provide evidence that the properties are due to the molecular junction. Further investigations using these and other molecular junction test beds will provide the needed experimental data to advance fundamental understanding of molecular transport and facilitate future molecular electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For example, see J.M. Tour, Molecular Electronics (World Scientific, River Edge, NJ, 2003).

    Book  Google Scholar 

  2. For example, see J.C. Ellenbogen and J. C. Love, Proc. IEEE 88 (2000) p. 386.

    Article  CAS  Google Scholar 

  3. For example, see S.C. Goldstein and M. Budiu, in Proc. 28th Annu. Int. Symp. on Computer Architecture (ACM Press, New York, 2001) p. 178.

    Google Scholar 

  4. For example, see B.A. Mantooth and P.S. Weiss, Proc. IEEE 91 (2003) p. 1785.

    Article  CAS  Google Scholar 

  5. For example, see R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, and R. Reifenberger, Science 272 (1996) p. 1323.

    Article  CAS  Google Scholar 

  6. For example, see Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.W. Price, A.M. Rawlett, D.L. Allara, J.M. Tour, and P.S. Weiss, Science 292 (2001) p. 2303.

    Article  CAS  Google Scholar 

  7. For example, see M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278 (1997) p. 252

    Article  CAS  Google Scholar 

  8. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, and H.V. Löhneysen, Phys. Rev. Lett. 88 176804 (2002)

  9. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, P.A. Alivisatos, and P.L. McEuen, Nature 407 (2000) p. 57

    Article  CAS  Google Scholar 

  10. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D.C. Ralph, Nature 417 (2002) p. 722

    Article  CAS  Google Scholar 

  11. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park, Nature 417 (2002) p. 725.

    Article  CAS  Google Scholar 

  12. For example, see D.J. Wold and C.D. Frisbie, J. Am. Chem. Soc. 123 (2001) p. 5549

    Article  CAS  Google Scholar 

  13. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, and S.M. Lindsay, Science 294 (2001) p. 571.

    Article  CAS  Google Scholar 

  14. For example, see R. Haag, M.A. Rampi, R.E. Holmlin, and G.M. Whitesides, J. Am. Chem. Soc. 121 (1999) p. 7895

    Article  CAS  Google Scholar 

  15. J.D. Le, Y. He, T.R. Hoye, C.C. Mead, and R.A. Kiehl, Appl. Phys. Lett. 83 (2003) p. 5518.

    Article  CAS  Google Scholar 

  16. For example, see J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour, Science 286 (1999) p. 1550

    Article  CAS  Google Scholar 

  17. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, Appl. Phys. Lett. 78 (2001) p. 3735.

    Article  CAS  Google Scholar 

  18. For example, see J.K.N. Mbindyo, T.E. Mallouk, J.B. Mattzela, I. Kratochvilova, B. Razavi, T.N. Jackson, and T.S. Mayer, J. Am. Chem. Soc. 124 (2002) p. 4020.

    Article  CAS  Google Scholar 

  19. For example, see J.G. Kushmerick, D.B. Holt, J.C. Yang, J. Naciri, M.H. Moore, and R. Shashidhar, Phys. Rev. Lett. 89 086802 (2002).

  20. For example, see C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, and J.R. Heath, Science 285 (1999) p. 391.

    Article  CAS  Google Scholar 

  21. L.T. Cai, H. Skulason, J.G. Kushmerick, S.K. Pollack, J. Naciri, R. Shashidhar, D.A. Allara, T.E. Mallouk, and T.S. Mayer, J. Phys. Chem. B 108 (2004) p. 2827.

    Article  CAS  Google Scholar 

  22. J.G. Kushmerick, D.B. Holt, S.K. Pollack, M.A. Ratner, J.C. Yang, T.L. Schull, J. Naciri, M.H. Moore, and R. Shashidhar, J. Am. Chem. Soc. 124 (2002) p. 10654.

    Article  CAS  Google Scholar 

  23. J.G. Kushmerick, S.K. Pollack, J.C. Yang, J. Naciri, D.B. Holt, M.A. Ratner, and R. Shashidhar, Ann. N.Y. Acad. Sci. 1006 (2003) p. 277.

    Article  CAS  Google Scholar 

  24. J.G. Kushmerick, J. Lazorcik, C.H. Patterson, R. Shashidhar, D.S. Seferos, and G.C. Bazan, Nano Lett. 4 (2004) p. 639.

    Article  CAS  Google Scholar 

  25. A. Ulman, Chem. Rev. 96 (1996) p.1533

    Article  CAS  Google Scholar 

  26. G.E. Poirier, Chem. Rev. 97 (1997) p. 1117.

    Article  CAS  Google Scholar 

  27. L.A. Bumm, J.J. Arnold, T.D. Dunbar, D.L. Allara, and P.S. Weiss, J.Phys.Chem. B. 83 1999) p.8122.

  28. For example, see D.L. Allara, T.D. Dunbar, P.S. Weiss, L.A. Bumm, M.T. Cygan, J.M. Tour, T.P. Burgin, and L. Jones II, Ann. N.Y. Acad. Sci. 852 (1998) p. 349

    Article  CAS  Google Scholar 

  29. M.T. Cygan, T.D. Dunbar, J.J. Arnold, L.A. Bumm, N.F. Shedlock, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour, and P.S. Weiss, J. Am. Chem. Soc. 120 (1998) p. 2721.

    Article  CAS  Google Scholar 

  30. R.G. Nuzzo and D.L. Allara, J. Am. Chem. Soc. 105 (1983) p. 4481.

    Article  CAS  Google Scholar 

  31. J.G. Kushmerick, J. Naciri, J.C. Yang, and R. Shashidhar, Nano Lett. 3 (2003) p. 897.

    Article  CAS  Google Scholar 

  32. J.D. Monnell, J.J. Stapleton, J.M. Tour, D.L. Allara, and P.S. Weiss, J. Phys. Chem. B 2004) in press.

    Google Scholar 

  33. M.P. Stewart, F. Maya, D.V. Kosynkin, S.M. Dirk, J.J. Stapleton, C.M. McGuiness, D. Allara, and J.M. Tour, J. Am. Chem. Soc 126 (2004) p. 370.

    Article  CAS  Google Scholar 

  34. J.J. Stapleton, P. Harder, T.A. Daniel, M. Reinard, H. Skulason, Y. Yao, D.W. Price, J.M. Tour, and D.L. Allara, Langmuir 19 (2003) p. 8245.

    Article  CAS  Google Scholar 

  35. M.L. Tian, J.U. Wang, J. Kurtz, T.E. Mallouk, and M.H.W. Chan, Nano Lett. 3 (2003) p. 919.

    Article  CAS  Google Scholar 

  36. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J.K.N. Mbindyo, and T.E. Mallouk, Appl. Phys. Lett. 77 (2000) p. 1399.

    Article  CAS  Google Scholar 

  37. L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour, and P.S. Weiss, Science 271 (1996) p. 1705.

    Article  CAS  Google Scholar 

  38. M.T. Cygan, T.D. Dunbar, J.J. Arnold, L.A. Bumm, N.F. Shedlock, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour, and P.S. Weiss, J. Am. Chem. Soc. 120 (1998) p. 2721.

    Article  CAS  Google Scholar 

  39. D.J. Wold, R. Haag, M.A. Rampi, and C.D. Frisbie, J. Phys. Chem. B 106 (2002) p. 2813.

    Article  CAS  Google Scholar 

  40. R.E. Holmlin, R. Haag, M.L. Chabinyc, R.F. Ismagilov, A.E. Cohen, A. Terfort, M.A. Rampi, and G.M. Whitesides, J. Am. Chem. Soc. 123 (2001) p. 5075.

    Article  CAS  Google Scholar 

  41. A.S. Blum, J.C. Yang, R. Shashidhar, and B. Ratna, Appl. Phys. Lett. 82 (2003) p. 3322.

    Article  CAS  Google Scholar 

  42. S.B. Sachs, S.P. Dudek, R.P. Hsung, L.R. Sita, J.F. Smalley, M.D. Newton, S.W. Feldberg, and C.E.D. Chidsey, J. Am. Chem. Soc. 119 (1997) p. 10563.

    Article  CAS  Google Scholar 

  43. S. Creager, C.J. Yu, C. Bamdad, S. O’Connor, T. MacLean, E. Lam, Y. Chong, G.T. Olsen, J. Luo, M. Gozin, and J.F. Kayyem, J. Am. Chem. Soc. 121 (1999) p. 1059.

    Article  CAS  Google Scholar 

  44. M.P. Samanta, W. Tian, S. Datta, J.I. Henderson, and C.P. Kubiak, Phys. Rev. B 53 1996) p. R7626.

  45. J.M. Seminario and P.A. Derosa, J. Am. Chem. Soc. 123 (2001) p. 12418.

    Article  CAS  Google Scholar 

  46. A.J. Heeger, J. Phys. Chem. B 105 (2001) p. 8475.

    Article  CAS  Google Scholar 

  47. R. Farchioni and G. Grosso, eds., Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids, Vol. 41 (Springer, New York, 2001).

    Google Scholar 

  48. R.E. Peierls, Quantum Theory of Solids (Oxford University Press, London, 1955).

    Google Scholar 

  49. L. Patrone, S. Palacin, J. Charlier, F. Armand, J.-P. Bourgoin, H. Tang, and S. Gauthier, Phys. Rev. Lett. 91 096802 (2003); and

  50. S.N. Yaliraki, M. Kemp, and M.A. Ratner, J. Am. Chem. Soc. 121 (1999) p. 342.

    Article  Google Scholar 

  51. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II, and J.M. Tour, Appl. Phys. Lett. 71 (1997) p. 611

    Article  CAS  Google Scholar 

  52. A.-A. Dhirani, P.-H. Lin, P. Guyot-Sionnest, R.W. Zehner, and L.R. Sita, J. Chem. Phys. 106 (1997) p. 5249

    Article  CAS  Google Scholar 

  53. J. Taylor, M. Brandbyge, and K. Stokbro, Phys. Rev. Lett. 89 (2002) p. 138301.

    Article  CAS  Google Scholar 

  54. J.M. Beebe, V.B. Engelkes, L.L. Miller, and C.D. Frisbie, J. Am. Chem. Soc. 124 (2002) p. 11268.

    Article  CAS  Google Scholar 

  55. R.C. Jaklevic and J. Lambe, Phys. Rev. Lett. 17 (1966) p. 1139.

    Article  CAS  Google Scholar 

  56. B.C. Stipe, M.A. Rezaei, and W. Ho, Science 280 (1998) p. 1732.

    Article  CAS  Google Scholar 

  57. A. Troisi, M.A. Ratner, and A. Nitzan, J. Chem. Phys. 118 (2003) p. 6072.

    Article  CAS  Google Scholar 

  58. D. Segal and A. Nitzan, J. Chem. Phys. 117 (2002) p. 3915.

    Article  CAS  Google Scholar 

  59. Y.-C. Chen, M. Zwolak, and M. Di Ventra, Nano Lett. 3 (2003) p. 1691.

    Article  CAS  Google Scholar 

  60. Y. Selzer, M.A. Cabassi, T.S. Mayer, and D.L. Allara, J. Am. Chem. Soc., Chem. Commun. 126 (2004) p. 4052.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kushmerick, J.G., Allara, D.L., Mallouk, T.E. et al. Electrical and Spectroscopic Characterization of Molecular Junctions. MRS Bulletin 29, 396–402 (2004). https://doi.org/10.1557/mrs2004.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.122

Keywords

Navigation