Skip to main content
Log in

Charge Transport through Molecular Junctions

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In conventional solid-state electronic devices, junctions and interfaces play a significant if not dominant role in controlling charge transport. Although the emerging field of molecular electronics often focuses on the properties of the molecule in the design and understanding of device behavior, the effects of interfaces and junctions are often of comparable importance. This article explores recent work in the study of metal–molecule–metal and semiconductor–molecule–metal junctions. Specific issues include the mixing of discrete molecular levels with the metal continuum, charge transfer between molecules and semiconductors, electron-stimulated desorption, and resonant tunneling. By acknowledging the consequences of junction/interface effects, realistic prospects and limitations can be identified for molecular electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Heath and M.A. Ratner, Phys. Today 56 (2003) p. 43.

    CAS  Google Scholar 

  2. N.D. Lang and P. Avouris, Nano Lett. 2 (2002) p. 1047.

    CAS  Google Scholar 

  3. A. Nitzan and M.A. Ratner, Science 300 (2003) p. 1384.

    CAS  Google Scholar 

  4. S. Piccinin, A. Selloni, S. Scandolo, R. Car, and G. Scoles, J. Chem. Phys. 119 (2003) p. 6729.

    CAS  Google Scholar 

  5. Y. Xue, S. Datta, and M.A. Ratner, J. Chem. Phys. 115 (2001) p. 4292.

    CAS  Google Scholar 

  6. P. Damle, A.W. Ghosh, and S. Datta, Chem. Phys. 281 (2002) p. 171.

    CAS  Google Scholar 

  7. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, Phys. Rev. Lett. 79 (1997) p. 2530.

    CAS  Google Scholar 

  8. W. Tian, S. Datta, S. Hong, R. Reifenberger, J. Henderson, and C.P. Kubiak, J. Chem. Phys. 109 (1998) p. 2874.

    CAS  Google Scholar 

  9. S. Datta, Superlattices Microstruct. 28 (2000) p. 253.

    CAS  Google Scholar 

  10. J.J. Palacios, E. Louis, A.J. Perez-Jimenez, E.S. Fabian, and J.A. Verges, Nanotechnology 13 (2002) p. 378.

    CAS  Google Scholar 

  11. C. Kergueris, J.-P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, and C. Joachim, Phys. Rev. B 59 (1999) p. 12505.

    CAS  Google Scholar 

  12. M. Di Ventra, S.T. Pantelides, and N.D. Lang, Phys. Rev. Lett. 84 (2000) p. 979.

    Google Scholar 

  13. E.G. Emberly and G. Kirczenow, Phys. Rev. B 64 235412 (2001).

  14. N.D. Lang and P. Avouris, Phys. Rev. B 64 125323 (2001).

  15. Y. Xue, S. Datta, and M. Ratner, Chem. Phys. 281 (2002) p. 151.

    CAS  Google Scholar 

  16. D.M. Adams, L. Brus, C.E.D. Chidsey, S. Creager, C. Cruetz, C.R. Kagan, P.V. Kamat, M. Lieberman, S. Lindsay, R.A. Marcus, R.M. Metzger, M.E. Michel-Beyerle, J.R. Miller, M.D. Newton, D.R. Rolison, O. Sankey, K.S. Schanze, J. Yardley, and X. Zhu, J. Phys. Chem. B 107 (2003) p. 6668.

    CAS  Google Scholar 

  17. P. Fenter, F. Schreiber, L. Berman, G. Scoles, P. Eisenberger, and M.J. Bedzyk, Surf. Sci. 412/413 (1998) p. 213.

    CAS  Google Scholar 

  18. J. Noh and M. Hara, Langmuir 18 (2002) p. 1953.

    CAS  Google Scholar 

  19. H. Kondoh, M. Iwasaki, T. Shimada, K. Ameniya, T. Yokoyama, T. Ohta, M. Shimomura, and S. Kono, Phys. Rev. Lett. 90 066102 (2003).

  20. M. Salmeron, G. Neubauer, A. Folch, M. Tomitori, D.F. Ogletree, and P. Sautet, Langmuir 9 (1993) p. 3600.

    CAS  Google Scholar 

  21. D.J. Wold and C.D. Frisbie, J. Am. Chem. Soc. 122 (2000) p. 2970.

    CAS  Google Scholar 

  22. X.D. Cui, X. Zarate, J. Tomfohr, O.F. Sankey, A. Primak, A.L. Moore, T.A. Moore, D. Gust, G. Harris, and S.M. Lindsay, Nanotechnology 13 (2002) p. 5.

    CAS  Google Scholar 

  23. W. Wang, T. Lee, and M.A. Reed, Phys. Rev. B 68 035416 (2003).

  24. B. Xu and N.J. Tao, Science 301 (2003) p. 1221.

    CAS  Google Scholar 

  25. S. Hong, R. Reifenberger, W. Tian, S. Datta, J.I. Henderson, and C.P. Kubiak, Superlattices Microstruct. 28 (2000) p. 289.

    CAS  Google Scholar 

  26. Y. Xue, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, Phys. Rev. B 59 1999) p. R7852.

  27. J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour, Science 286 (1999) p. 1550.

    CAS  Google Scholar 

  28. J. Chen, W. Wang, M.A. Reed, and A.M. Rawlett, Appl. Phys. Lett. 77 (2000) p. 1224.

    CAS  Google Scholar 

  29. R.F. Service, Science 302 (2003) p. 556.

    CAS  Google Scholar 

  30. C. Zhou, C.J. Miller, M.R. Deshpande, J.W. Sleight, and M.A. Reed, Appl. Phys. Lett. 67 (1995) p. 1160.

    CAS  Google Scholar 

  31. H. Park, A.K.L. Lim, J. Park, A.P. Alivisatos, and P.L. McEuen, Appl. Phys. Lett. 75 (1999) p. 301.

    CAS  Google Scholar 

  32. C.Z. Li and N.J. Tao, Appl. Phys. Lett. 72 (1998) p. 894.

    CAS  Google Scholar 

  33. J. Reichert, R. Ochs, D. Beckman, H.B. Weber, M. Mayor, and H.v. Löhneysen, Phys. Rev. Lett. 88 176804 (2002).

  34. H.B. Weber, J. Reichert, F. Weigand, R. Ochs, D. Beckmann, M. Mayor, R. Ahlrichs, and H.v. Löhneysen, Chem. Phys. 281 (2002) p. 113.

    CAS  Google Scholar 

  35. A. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Bredas, A. Stuhr-Hansen, P. Hedegard, and T. Bjornholm, Nature 425 (2003) p. 698.

    CAS  Google Scholar 

  36. A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruña, P.L. McEuen, and D.C. Ralph, Nature 417 (2002) p. 722.

    Google Scholar 

  37. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park, Nature 417 (2002) p. 725.

    CAS  Google Scholar 

  38. G.V. Nazin, X.H. Qiu, and W. Ho, Science 302 (2003) p. 77.

    CAS  Google Scholar 

  39. J.M. Buriak, Chem. Rev. 102 (2002) p. 1271.

    CAS  Google Scholar 

  40. S.N. Patitsas, G.P. Lopinski, O. Hul’ko, D.J. Moffatt, and R.A. Wolkow, Surf. Sci. Lett. 457 2000) p. L425.

  41. P. Kruse and R.A. Wolkow, Appl. Phys. Lett. 81 (2002) p. 4422.

    CAS  Google Scholar 

  42. J.L. Pitters, P.G. Piva, X. Tong, and R.A. Wolkow, Nano Lett. 3 (2003) p. 1431.

    CAS  Google Scholar 

  43. N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, and M.C. Hersam, Nano Lett. 4 (2004) p. 55.

    CAS  Google Scholar 

  44. S. Alavi, R. Rousseau, S.N. Patitsas, G.P. Lopinski, R.A. Wolkow, and T. Seideman, Phys. Rev. Lett. 85 (2000) p. 5372.

    CAS  Google Scholar 

  45. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, and J.R. Heath, Science 289 (2000) p. 1172.

    CAS  Google Scholar 

  46. Z. Liu, A.A. Yasseri, J.S. Lindsey, and D.F. Boclan, Science 302 (2003) p. 1543.

    CAS  Google Scholar 

  47. J.K. Kang and C.B. Musgrave, J. Chem. Phys. 116 (2002) p. 9907.

    CAS  Google Scholar 

  48. G.P. Lopinski, D.D.M. Wayner, and R.A. Wolkow, Nature 406 (2000) p. 48.

    CAS  Google Scholar 

  49. P. Kruse, E.R. Johnson, G.A. DiLabio, and R.A. Wolkow, Nano Lett. 2 (2002) p. 807.

    CAS  Google Scholar 

  50. J. Zhao and K. Uosaki, Appl. Phys. Lett. 83 (2003) p. 2034.

    CAS  Google Scholar 

  51. S. Lenfant, C. Krzeminki, C. Delerue, G. Allan, and D. Vuillaume, Nano Lett. 3 (2003) p. 741.

    CAS  Google Scholar 

  52. Y.-L. Loo, D.V. Lang, J.A. Rogers, and J.W.P. Hsu, Nano Lett. 3 (2003) p. 913.

    CAS  Google Scholar 

  53. N. Nicoara, O. Custance, D. Granados, J.M. Garcia, J.M. Gomez-Rodriguez, A.M. Baro, and J. Mendez, J. Phys.: Condens. Matter 15 (2003) p. 1.

    Google Scholar 

  54. T. Rakshit, G.-C. Liang, A.W. Ghosh, and S. Datta, arXiv.org e-print archive, cond-mat/0305695_(accessed March 2004).

    Google Scholar 

  55. M.C. Hersam, N.P. Guisinger, and J.W. Lyding, Nanotechnology 11 (2000) p. 70.

    CAS  Google Scholar 

  56. R. Akiyama, T. Matsumoto, and T. Kawai, Phys. Rev. B 62 (2000) p. 2034.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hersam, M.C., Reifenberger, R.G. Charge Transport through Molecular Junctions. MRS Bulletin 29, 385–390 (2004). https://doi.org/10.1557/mrs2004.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.120

Keywords

Navigation