Skip to main content
Log in

Cosmic-Ray Neutrons on the Ground and in the Atmosphere

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Neutrons from collisions of cosmic rays with the nuclei of atoms in the atmosphere are an irremovable external radiation that causes single-event upsets in microelectronic devices. Predicting soft error rates requires knowledge of the flux and energy distribution of the cosmic-ray-induced neutrons. This article reviews cosmic-ray neutrons in the atmosphere and on the ground, the factors that determine their intensity, and recent calculations and state-of-the-art measurements of neutron spectra covering 12 decades of energy, from the thermal energy range up to 10 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IBM J. Res. Develop. 40 (1) (1996).

  2. G. Reitz, Radiat. Prot. Dosim. 48 (1993) p. 5.

    Google Scholar 

  3. J.M. Clem, D.P. Clements, J. Esposito, P. Evenson, D. Huber, J. ’Heureux, P. Meyer, and C. Constantin, Astrophys. J. 464 (1996) p. 507.

    Google Scholar 

  4. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  5. Bartol Research Institute Neutron Monitor Web site, http://www.bartol.udel.edu/—neutronm, then click on Solar Modulation (accessed November 2002).

  6. University of New Hampshire Neutron Monitor Web site, http://ulysses.sr.unh.edu/NeutronMonitor/Misc/neutron2.html, then click on *1950–2002 under Plots (accessed November 2002).

  7. J.W. Wilson, J.E. Nealy, F.A. Cucinotta, J.L. Shinn, F. Hajnal, M. Reginatto, and P. Gold-hagen, Radiation Safety Aspects of Commercial High-Speed Flight Transportation, NASA Technical Paper 3524 (National Technical Information Service, Springfield, VA, 1995).

    Google Scholar 

  8. J.M. Clem, J.W. Bieber, P. Evenson, D. Hall, J.E. Humble, and M. Duldig, J. Geophys. Res. 102 (1997) p. 26919.

    Google Scholar 

  9. P.H. Stoker, in Proc. 24th Int. Conf. on Cosmic Rays, Vol. 4 (Copernicus Gesellschaft, 1995) p. 1082.

    Google Scholar 

  10. J. Clem and L. Dorman, Space Sci. Rev. 93 (2000) p. 335.

    Google Scholar 

  11. J.F. Ziegler, “Terrestrial Cosmic Ray Intensities,” IBM J. Res. Dev. 42 (1) (1998) p. 117, available at www.research.ibm.com/journal/rd/421/ziegler.html (accessed November 2002).

    Google Scholar 

  12. P. Goldhagen, Health Phys. 79 (2000) p. 526.

    Google Scholar 

  13. P.K.F Grieder, Cosmic Rays at Earth: Researchers Reference Manual and Data Book (Else-vier, Amsterdam, 2001).

    Google Scholar 

  14. T. Foelsche, R.B. Mendell, J.W. Wilson, and R.R. Adams, Measured and Calculated Neutron Spectra and Dose Equivalent Rates at High Altitudes: Relevance to SST Operations and Space Research, NASA Technical Note D-7715 (National Technical Information Service, Springfield, VA, 1974).

    Google Scholar 

  15. J.W. Wilson, L.W. Townsend, W. Schimmerling, G.S. Khandelwal, F. Khan, J.E. Nealy, F.A. Cucinotta, L.C. Simonsen, J.L. Shinn, and J.W. Norbury, in Transport Methods and Interactions for Space Radiations, NASA Reference Publication 1257 (National Technical Information Service, Springfield, VA, 1991) p. 519.

    Google Scholar 

  16. K. O’Brien, LUIN, a Code for the Calculation of Cosmic Ray Propagation in the Atmosphere (Update of HASL-275), U.S. Department of Energy Technical Report EML-338 (National Technical Information Service, Springfield, VA, 1978).

    Google Scholar 

  17. K. O’Brien and F. Friedberg, Environ. Int. 20 (1994) p. 645.

    Google Scholar 

  18. E. Normand and T.J. Baker, IEEE Trans. Nucl. Sci. 40 (1993) p. 1484.

    Google Scholar 

  19. E. Normand, IEEE Trans. Nucl. Sci. 43 (1996) p. 461.

    Google Scholar 

  20. International Commission on Radiological Protection, Annals of the ICRP 21, IRP Publication 60 (Pergamon Press, Elmsford, NY, 1991).

  21. A. Fasso, A. Ferrari, A. Ranft, and P.R. Sala, in Proc. Third Workshop on Simulating Accelerator Radiation Environments (SARE-3), edited by H. Hirayama (KEK, Tsukuba, Japan, 1997) p. 32.

  22. S. Roesler, W. Heinrich, and H. Schraube, Radiat. Prot. Dosim. 98 (2002) p. 37.

    Google Scholar 

  23. A. Ferrari, M. Pelliccioni, and T. Rancati, Radiat. Prot. Dosim. 93 (2001) p. 101.

    Google Scholar 

  24. P. Goldhagen, M. Reginatto, T. Kniss, J.W. Wilson, R.C. Singleterry, I.W. Jones, and W. Van Steveninck, Nucl. Instrum. Methods A 476 (2002) p. 42.

    Google Scholar 

  25. P. Goldhagen, J.M. Clem, and J.W. Wilson, Adv. Space Res. in press.

  26. R.L. Bramblett, R.I. Ewing, and T.W. Bonner, Nucl. Instrum. Methods 9 (1960) p. 1.

    Google Scholar 

  27. D.J. Thomas and A.V. Alevra, Nucl. Instrum. Methods A 476 (2002) p. 12.

    Google Scholar 

  28. L.S. Waters, ed., MCNPX User’s Manual, Version 2.3.0, Report LA-UR 02–2607 (Los Alamos National Laboratory, Los Alamos, NM, April 2002).

    Google Scholar 

  29. M. Reginatto and P. Goldhagen, MAXED, A Computer Code for the Deconvolution of Multi-sphere Neutron Spectrometer Data Using the Maximum Entropy Method, U.S. Department of Energy Environmental Measurements Laboratory Technical Report EML-595 (1998), available on-line at www.eml.doe.gov/publications/reports (accessed November 2002).

    Google Scholar 

  30. M. Reginatto and P. Goldhagen, Health Phys. 77 (1999) p. 579.

    Google Scholar 

  31. S. Roesler (private communication).

  32. J.M. Clem, G. De Angelis, P. Goldhagen, and J.W. Wilson, Adv. Space Res. in press.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldhagen, P. Cosmic-Ray Neutrons on the Ground and in the Atmosphere. MRS Bulletin 28, 131–135 (2003). https://doi.org/10.1557/mrs2003.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.41

Keyword

Navigation