Skip to main content
Log in

Single-Event Upsets in Microelectronics: Fundamental Physics and Issues

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We review the current understanding of single-event upsets (SEUs) in microelectronic devices. In recent years, SEUs have been recognized as one of the key reliability concerns for both current and future technologies.We identify the major sources of SEUs that impact many commercial products: (1) alpha particles in packaging materials, (2) background radiation due to cosmic rays, and (3) thermal neutrons in certain device materials. The origins of SEUs are examined from the standpoint of the fundamental atomic and nuclear interactions between the intruding particles (alpha particles, cosmic rays, and thermal neutrons) and semiconductor materials.We analyze field funneling, which is a key mechanism of charge collection in a device struck by an ionizing particle. Next, we formulate how SEU cross sections and SEU rates are calculated and discuss how these basic quantities are related to experiments. Finally, we summarize the major SEU issues regarding modeling, bulk complementary metal oxide semiconductor technologies, and research on future, exploratory technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. May and M.H. Woods, IEEE Trans. Electron Devices ED-26 (1979) p. 2.

    Google Scholar 

  2. J.F. Ziegler and W.A. Lanford, Science 206 (1979) p. 776.

    Google Scholar 

  3. IBM J. Res. Develop. 40 (1) (1996).

  4. P.J. McNulty, Phys. Today 36 (1983) p. 9.

    Google Scholar 

  5. R.C. Baumann, T.Z. Hossain, S. Murata, and H. Kitagawa, in Proc. 33rd IEEE Int. Reliability Physics Symp. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995) p. 302.

    Google Scholar 

  6. H. Takai, ATLAS High-Energy Physics Collaboration, Brookhaven National Laboratory (private communication); H.Takai and H.H.K.Tang, Brookhaven National Laboratory-IBM Research Preprint (2002), “Single Event Effects in High Energy Physics Environment,” to appear in Nucl. Instrum. Methods.

  7. J.L. Romero, STAR Relativistic Heavy-Ion Physics Collaboration, Brookhaven National Laboratory (private communication).

  8. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990); S. Flugge, ed., Handbuch der Physik, Vol. XLVI/1 (Springer, Berlin, 1961); Handbuch der Physik, Vol. XLVI/2 (Springer, Berlin, 1967).

    Google Scholar 

  9. M.W. Friedlander, A Thin Cosmic Rain (Harvard University Press, Cambridge, MA, 2000).

    Google Scholar 

  10. E. Normand, IEEE Trans. Nucl. Sci. NS-48 (2001) p. 1996.

    Google Scholar 

  11. H.H.K Tang, IBM J. Res. Develop. 40 (1996) p. 91.

    Google Scholar 

  12. E. Segre, Rev. Mod. Phys. 27 (1955) p. 257.

    Google Scholar 

  13. C.M. Hsieh, P.C. Murley, and R.R. O’Brien, IEEE Trans. Electron Devices ED-30 (1983) p. 686.

    Google Scholar 

  14. H.H.K Tang, G.R. Srinivasan, and N. Azziz, Phys. Rev. C 42 (1990) p. 1598.

    Google Scholar 

  15. J.L. Romero, H.H.K Tang, D.J. Morrissey, M. Fauerbach, R. Pfaff, C.F. Powell, B.M. Sherrill, F.P. Brady, D.A. Cebra, J. Chance, J.C. Kintner, and J.H. Osborne, in Proc. 14th Int. Conf. on Application of Accelerators in Research and Industry, Vol. 392, edited by J.L. Duggan and I.L. Morgan (American Institute of Physics, College Park, MD, 1997) p. 655.

    Google Scholar 

  16. H.H.K Tang and J.L. Romero, in Proc. 14th Int. Conf. on Application of Accelerators in Research and Industry, Vol. 392, edited by J.L. Duggan and I.L. Morgan (American Institute of Physics, College Park, MD, 1997) p. 325; H.H.K Tang, in Proc. Int. Conf. on Nuclear Data for Science and Technology, Vol. 12, edited by G. Reffo, A. Ventura, and C. Grandi (Italian Physical Society, Bologna, Italy, 1997) p. 1492.

    Google Scholar 

  17. P. Oldiges, K. Bernstein, D. Heidel, B. Klaasen, E. Cannon, R. Dennard, H. Tang, M. Ieong, and H.-S.P. Wong, in Proc. IEEE Symp. on VLSI Circuits (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002) p. 46.

    Google Scholar 

  18. G.R. Srinivasan, H.K. Tang, and P.C. Murley, IEEE Trans. Nucl. Sci. NS-41 (1994) p. 2063; G.R. Srinivasan, P.C. Murley, and H.K. Tang, in Proc. 32nd IEEE Int. Reliability Physics Symp. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1994) p. 12.

    Google Scholar 

  19. K. Rodbell, T.H. Zabel, and H. Tang, data taken from IBM Yorktown Tandem Accelerator, 2002 (unpublished).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, H.H.K., Rodbell, K.P. Single-Event Upsets in Microelectronics: Fundamental Physics and Issues. MRS Bulletin 28, 111–116 (2003). https://doi.org/10.1557/mrs2003.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.37

Keyword

Navigation