Skip to main content
Log in

Emerging Materials Challenges in Microelectronics Packaging

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Introduction

The trend for microelectronic devices has historically been, and will continue to be, toward a smaller feature size, faster speeds, more complexity, higher power, and lower cost. The driving force behind these advances has traditionally been microprocessors. With the tremendous growth of wireless telecommunications, rf applications are beginning to drive many areas of microelectronics that traditionally were led by developments in microprocessors. An increasingly dominant factor in rf microelectronics is electronic packaging, and the materials needed to create the package, because the package materials strongly affect the performance of the electronics. Many challenges remain for the packaging of microprocessors as well. These challenges include increased speed, the number of input/output interconnects, decreased pitch, and decreased cost. This article highlights the key issues facing the packaging of high-performance digital and rf electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Philofsky, Solid-State Electron. 13 (1970) p. 1391.

    Google Scholar 

  2. L. Levine and M. Sheaffer, Solid State Technol. 36 (March 1993) p. 63.

    Google Scholar 

  3. L.S. Goldman, IBM J. Res. Dev. 13 (1969) p. 251.

    Google Scholar 

  4. K.J. Blackwell, I.I. Memis, and R.P. Kuracina, High Density Interconnect—HDI 1 (4) (1998) p. 20.

    Google Scholar 

  5. P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, and H. Deligianni, IBM J. Res. Dev. 42 (1998) p. 567.

    Google Scholar 

  6. C. Hu-K. and J..M. Harper, Mater. Chem. Phys. 52 (1998) p. 5.

    Google Scholar 

  7. N.C. Lee, Adv. Microelectron. (September/ October 1999) p. 29.

    Google Scholar 

  8. A. Grusd, in Circuits Assembly 10 (8) (1999) p. 32.

    Google Scholar 

  9. J. Glazer, Int. Mater. Rev. 40 (2) (1995) p. 65.

    Google Scholar 

  10. J. Glazer, J. Electron. Mater. 23 (8) (1994) p. 693.

    Google Scholar 

  11. G. Whitten, in Proc. 50th Electronic Components and Technology Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2000) p. 1410.

    Google Scholar 

  12. E. Bradley III and J. Hramisavljevic, in Proc. 50th Electronic Components and Technology Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2000) p. 1443.

    Google Scholar 

  13. W.K. Choi and H.M. Lee, J. Electron. Mater. 29 (10) (2000) p. 1207.

    Google Scholar 

  14. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 29 (10) (2000) p. 1241.

    Google Scholar 

  15. T.S. Choi, K.N. Subramanian, and J.P. Lucas, J. Electron. Mater. 29 (10) (2000) p. 1249.

    Google Scholar 

  16. Y. Miyazawa and T. Ariga, in Proc. 1st Int. Symp. on Environmentally Conscious Design (IEEE Computer Society, Los Alamitos, CA, 1999) p. 616.

    Google Scholar 

  17. M. Abtew and G. Selvardery, Mater. Sci. Eng. 27 (2000) p. 95.

    Google Scholar 

  18. H.K. Seelig and D. Suraski, in Proc. 50th Electronic Components and Technology Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2000) p. 1405.

    Google Scholar 

  19. K.G. Snowden, C.G. Tanner, and J.R. Thompson, in Proc. 50th Electronic Components and Technology Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2000) p. 1416.

    Google Scholar 

  20. T.M. Korhonen, P. Su, S.J. Hong, and M.A. Korhonen, J. Electron. Mater. 29 (10) (2000) p. 1194.

    Google Scholar 

  21. J.C. Foley, A. Gickler, F.H. Leprevost, and D. Brown, J. Electron. Mater. 29 (10) (2000) p. 1258.

    Google Scholar 

  22. D.R. Frear and P.T. Vianco, Metall. Trans.25A (1994) p. 1509.

    Google Scholar 

  23. M.W. Roberson, P.A. Deane, S. Bonafede, A. Huffman, and S. Nangalia, J. Electron. Mater. 29 (10) (2000) p. 1274.

    Google Scholar 

  24. Z. Hasnain and A. Ditali, in 30th Annu. Proc. on Reliability Physics (IRPS Publication Services, Westmoreland, NY, 1992) p. 276.

    Google Scholar 

  25. J.K. Lin, B. Lytle, J. Drye, T. Scharr, R. Sharma, and R. Subrahmanyan, in Proc. 46th Electronic Components and Technology Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1996) p. 1059.

    Google Scholar 

  26. P. Bowles and L. Li, in Proc. IMAPS Adv. Technol. Workshop on Passive Integration (International Microelectronics and Packaging Society, Washington, DC, 2002) p. 71.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frear, D.R., Thomas, S. Emerging Materials Challenges in Microelectronics Packaging. MRS Bulletin 28, 68–74 (2003). https://doi.org/10.1557/mrs2003.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.20

Keywords

Navigation