Skip to main content
Log in

High-Performance Packaging of Power Electronics

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Packaging of solid-state power electronics is a highly interdisciplinary process requiring knowledge of electronics, heat transfer, mechanics, and materials science. Consequently, there are numerous opportunities for innovations at the interfaces of these complementary fields. This article offers a perspective of the current state of the art and identifies six specific areas for materials-based research in power electronics packaging. The emphasis is on identifying the underlying physical relationships that link the performance of the power electronics system to the microstructure and architectural arrangement of the constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Jahns and E.L. Owen, IEEE Trans. Power Electron. 16 (1) (2001) p. 17.

    Google Scholar 

  2. P. Wikstrom, A. Terens, and H. Kobi, IEEE Trans. Ind. Appl. 36 (1) (2000).

    Google Scholar 

  3. M.C. Shaw and B.C. Beihoff, in Proc. IEEE, Vol. 89, No. 6, Special Edition on Power Electronics, edited by van J.D. Wyk, F.C. Lee, and D. Boroyevich (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001).

  4. J. Wilson, Electronics Cooling 8 (1) (2002) p. 14.

    Google Scholar 

  5. R.R. Tummala and E.J. Rymaszewski, Microelectronics Packaging Handbook (Van Nostrand Reinhold, New York, 1989).

    Google Scholar 

  6. H. Taraseisky, Power Hybrid Circuit Design and Manufacture (Marcel Dekker, New York, 1996).

    Google Scholar 

  7. S.M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).

    Google Scholar 

  8. J.V. Beck, A.M. Osman, and G. Lu, J. Heat Transfer 115 (1993) p. 51.

    Google Scholar 

  9. C. Fu-Y. and C. Ume, JOM (June 1995) p. 31.

    Google Scholar 

  10. J.W. Sofia, IEEE Trans. Components, Packag., Manuf. Technol., Part A 18 (1995) p. 39.

    Google Scholar 

  11. B.M. Guenin, Electronics Cooling 8 (3) (2002).

    Google Scholar 

  12. A. Ammous and B. Allard, IEEE Trans. Power Electron. 13 (1) (1998) p. 12.

    Google Scholar 

  13. W. Nakayama, Appl. Mech. Rev. 39 (12) (1986) p. 1847.

    Google Scholar 

  14. S.D. Garner, Electronics Cooling 2 (3) (1996).

    Google Scholar 

  15. K.S. Sekhon and V.W. Ruwe, in Proc. ISHM Int. Microelectronics Symp. (1984) p. 16.

    Google Scholar 

  16. R. Dethlefsen, A. Egli, and K.T. Feldman, IEEE Trans. Power Appar. Sys. PAS-101 (9) (1982).

    Google Scholar 

  17. M.C. Shaw, J.R. Waldrop, S. Chandrasekaran, B. Kagawala, X. Jing, E.R. Brown, M. Dhir, and M. Fabbeo, in Proc. ITherm Conf. (2002).

    Google Scholar 

  18. D.B. Tuckerman and R..F. Pease, IEEE Electron Device Lett. EDL-2 (5) (1981).

    Google Scholar 

  19. S. Oktay, R. Hannemann, and Bar-A. Cohen, Mech. Eng. 108 (3) (1986) p. 36.

    Google Scholar 

  20. T. Kishimoto and T. Ohsaki, in Proc. 36th Electronic Components Conf. (1986) p. 595.

    Google Scholar 

  21. R.M. Patel, D.K. Wagner, A.D. Danner, K. Fallahpour, and R.S. Stinnet, in Proc. SPIE, Vol. 1634 (SPIE—The International Society for Optical Engineering, Bellingham, WA) p. 466.

  22. E. Vassilakis, T. Fillardet, B. Groussin, V. Carfemel, and C. Carriere, Electron. Lett. 31 (13) (1995) p. 1056.

    Google Scholar 

  23. G.O. Campbell, E.A. Estes, C.V. Hassapis, and M.M. Sherman, in Proc. STAIF-96 Conf. p. 933.

  24. Y. Yamada, H. Itahana, and S. Okada, Hitachi Review 29 (1980) p. 25.

    Google Scholar 

  25. A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, and H.N.G. Wadley, Prog. Mater. Sci. 46 (2001) p. 309.

    Google Scholar 

  26. Y.C. Lee, W. Zhang, H. Xie, and R. Mahajan, Advances in Electronic Packaging, EEP Vol. 4.1, (Electronic and Photonic Packaging Division, ASME International, New York, 1993).

  27. W.R. Humphries and E.I. Griggs, “A Design Handbook for Phase Change Thermal Control and Energy Storage Devices,” NASA Technical Paper 1074 (National Aeronautics and Space Administration, Washington, DC, November 1977).

    Google Scholar 

  28. D.V. Hale, M.J. Hoover, and M.J. O’Neill, Phase Change Materials Handbook, NASA CR-61363 (National Aeronautics and Space Administration, Washington, DC, September 1971).

    Google Scholar 

  29. A.G. Evans, M.Y. He, J.W. Hutchinson, and M.C. Shaw, J. Electron. Packag. 123 (2001) p. 211.

    Google Scholar 

  30. C.Y. Liu, C. Chen, C.N. Liao, and K.N. Tu, Appl. Phys. Lett. 75 (1) (1999) p. 58.

    Google Scholar 

  31. H. Ye, C. Basaran, D. Hopkins, and A. Cartwright, in Proc. ITherm Conf. (San Diego) p. 946.

  32. W. Wu, M. Held, P. Jacob, P. Scacco, and A. Birolini, in Proc. 7th Int. Symp. on Power Semiconductor Devices and ICs (IPSD ’95) (Yokohama, Japan).

  33. W. Wu, M. Held, P. Jacob, P. Scacco, and A. Birolini, in Proc. 7th Int. Symp. on Power Semiconductor Devices and ICs (IPSD ’95) (Yokohama, Japan).

  34. R. Saito, Y. Koike, A. Tanaka, T. Kushima, H. Shimizu, and S. Nonoyama, in Proc. Int. Symp. on Power Semiconductor Devices (Toronto, Canada, 1999).

    Google Scholar 

  35. G. LeFranc, T. Licht, H.J. Schultz, R. Beinert, and G. Mitic, Microelectron. Relia. 40 (2000) p. 1661.

    Google Scholar 

  36. G. Coquery and R. Lallemand, Microelectron. Relia. 40 (2000) p. 1667.

    Google Scholar 

  37. D. Westerhold, G. Schmidt, and H.-J. Schulze, in Proc. Power Conversion Conf. (Nuremburg, 1999).

    Google Scholar 

  38. K. Sommer, GöJ. ttert, G. Lefranc, and R. Spanke, in Proc. Eur. Conf. on Power Electronics and Applications, EPE ’97 (Trondheim, 1997) p. 512.

    Google Scholar 

  39. E.R. Brown and M.C. Shaw, IEEE Trans. Compon. Packag. Technol. (2002) in press.

    Google Scholar 

  40. M. Pecht, Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability (John Wiley & Sons, New York, 1994).

    Google Scholar 

  41. A. Elsayed, Reliability Engineering (Addison Wesley Longman, Reading, MA, 1996).

    Google Scholar 

  42. J. He, M.C. Shaw, N. Sridhar, B.N. Cox, and D.R. Clarke, in Electronic Packaging Materials Science X, edited by D.J. Belton, M. Gaynes, E.G. Jacobs, R. Pearson, and T. Wu (Mater. Res. Soc. Symp. Proc. 515, Warrendale, PA, 1998) p. 99.

    Google Scholar 

  43. J. He, M.C. Shaw, J.C. Mather, and R.C. Addison Jr, in Proc. IEEE Industry Applications Soc. Conf. (St. Louis, 1998).

    Google Scholar 

  44. M.C. Shaw, J. He, J. Mather, and R.C. Addison, IEEE Trans. Compon. Packag. Technol. (2002) in press.

    Google Scholar 

  45. J. He, W.L. Morris, N. Sridhar, M.C. Shaw, and J.C. Mather, Adv. Microelectron. (9) (1998) p. 37.

    Google Scholar 

  46. M.C. Shaw, in Comprehensive Composite Materials, edited by A. Kelly and C. Zweben (2000) p. 285.

  47. M.F. Ashby and D.R.G. Jones, Engineering Materials: An Introduction to Their Properties and Applications, International Series on Materials Science and Technology, Vol. 34 (Pergamon Press, Oxford, 1980).

    Google Scholar 

  48. ASM International, Metals Handbook, 9th ed., Failure Analysis and Prevention, Vol. 11 (American Society for Metals, Metals Park, OH, 1986).

    Google Scholar 

  49. C.R. Barrett, W.D. Nix, and S.S. Tetelman, The Principles of Engineering Materials (Prentice Hall, Englewood Cliffs, NJ, 1973).

    Google Scholar 

  50. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics (Oxford, New York, 1985).

    Google Scholar 

  51. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 2nd ed. (John Wiley & Sons, New York, 1983).

    Google Scholar 

  52. B. Lawn and T. Wilshaw, Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1979).

    Google Scholar 

  53. P.M. Stipan, B.C. Beihoff, and M.C. Shaw, in IEEE Handbook on Electronic Packaging, edited by G. Blackwell (CRC Press, Boca Raton, FL, 1999) p. 15.1.

  54. G. Harman, Reliability and Yield Problems in Wirebonding in Microelectronics (International Society for Hybrid Microelectronics, Reston, VA, 1991).

    Google Scholar 

  55. H.A. Schafft, Testing and Fabrication of Wirebond Electrical Connections: A Comprehensive Survey, Technical Note 726 (National Bureau of Standards, 1972).

    Google Scholar 

  56. S. Trigwell, Solid State Technol. (May 1993) p. 45.

    Google Scholar 

  57. V.A. Pitt and C..R. Needes, IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-5 (4) (1982).

    Google Scholar 

  58. D.R. Olsen and K.L. James, IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-7 (4) (1984).

    Google Scholar 

  59. M. Pecht, A. Dasgupta, and P. Lali, in Proc. Int. Soc. for Hybrid Microelectronics (Baltimore, 1989) p. 607.

    Google Scholar 

  60. J.K. Nesheim, in Proc. 1984 Int. Symp. on Microelectronics (ISSHM) (Dallas, TX, 1984).

    Google Scholar 

  61. K. James, IEEE Trans. Parts, Hybrids, Packag. PHP-13 (1977).

  62. G.G. Harman and C.L. Wilson, in Electronic Packaging Materials Science IV, edited by R. Jaccodine, K.A. Jackson, E.D. Lilley, and R.C. Sundahl (Mater. Res. Soc. Symp. Proc. 154, lWarrendale, PA, 1989) p. 401.

  63. V.A. Pitt and C.R.G. Needes, IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-10 (1987).

  64. G.G. Harman, in Proc. 12th Int. Reliability Physics Symp. (1974) p. 131.

    Google Scholar 

  65. K.V. Ravi and E.M. Philosky, in Proc. 10th Annu. Int. Reliability Physics Symp. (1972).

    Google Scholar 

  66. J. Onuki and M. Koizumi, in Proc. 7th Int. Symp. on Power Semiconductor Devices and ICs (IPSD ’95) (Yokohama, Japan).

  67. F. Barlow, Adv. Microelectron. (July/August 2001) p. 11.

    Google Scholar 

  68. X. Liu and G.-Q. Lu, Adv. Microelectron. (July/August 2001) p. 17.

    Google Scholar 

  69. H. Matsuda, M. Hiyoshi, and N. Kawamura, in Proc. Int. Symp. on Power Semiconductor Devices (1997) p. 17.

  70. S. Minehane, R. Duane, O’P. Sullivan, K.G. McCarthy, and A. Mathews, Microelectron. Relia. 40 (2000) p. 1285.

    Google Scholar 

  71. Home Page, www.btat.com.

  72. J. Evans and J.Y. Evans, IEEE Trans. Components, Packag., Manuf. Technol. 21 (1998) p. 459.

    Google Scholar 

  73. H. Takao, Y. Matsumoto, and M. Ishida, Sensors Actuators, A 65 (1998) p. 61.

    Google Scholar 

  74. J.W. Gardner, Microsensors: Principles and Applications (John Wiley & Sons, New York, 1994).

    Google Scholar 

  75. J.S. Hwang, Ball Grid Array & Fine Pitch Peripheral Interconnections (Electrochemical Publications, Port Erin, Isle of Man, 1995).

    Google Scholar 

  76. K. Suganama, MRS Bull. 26 (2001) pp. 880, 884.

    Google Scholar 

  77. Lead-Free Solder Project Final Report, NCMS Report 0401RE96 (National Center for Manufacturing Sciences, Ann Arbor, MI, 1997).

  78. J.S. Hwang, “Solder Materials,” SMT Mag. (2001) p. 60.

    Google Scholar 

  79. Z. Hou, G. Tian, C. Hatcher, and R.W. Johnson, Adv. Microelectron. (March/April 2002) p. 7.

    Google Scholar 

  80. “Guide to Lead-Free Soldering,” SMT Mag. (June 2001).

  81. S.K. Kang, “Recent Progress in Pb-Free Solders and Soldering Technologies,” J. Met. (2001) p. 16.

    Google Scholar 

  82. F.W. Gayle, G. Becka, J. Badgett, G. Whitten, T.Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, I. Anderson, J. Foley, A. Gickler, D. Napp, J. Mather, and C. Olson, “High Temperature Lead-Free Solder for Microelectronics,” J. Met. (2001) p. 17.

    Google Scholar 

  83. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, “Pb-Free Solders for Flip-Chip Interconnects,” J. Met. (2001) p. 28.

    Google Scholar 

  84. L.F. Eastman and U.K. Mishra, IEEE Spectrum (May 2002) p. 28.

    Google Scholar 

  85. F.P. McCluskey, R. Grzybowski, and E. Podlesak, eds., High Temperature Electronics (CRC Press, New York, 1997).

    Google Scholar 

  86. E.R. Brown, Solid-State Electron. 42 (12) (1998) p. 2119.

    Google Scholar 

  87. J. Waldrop, L. Warren Jr, F. Zok, J. Yang, J. McNulty, A..D. McKie, and M.C. Shaw, “High-Temperature Packaging of High-Power Electronics” (2002) unpublished manuscript.

    Google Scholar 

  88. Y. Chen-C. and C.C. Lee, Thin Solid Films 283 (1996) p. 243.

    Google Scholar 

  89. C.C. Lee and G. Matijasevic, IEEE Trans. Components, Hybrids, Manuf. Technol. 16 (3) (1993) p. 311.

    Google Scholar 

  90. M.M. Hou and T.W. Eagar, J. Electron. Packag. 114 (1992) p. 443.

    Google Scholar 

  91. J. Onuki, M. Satou, S. Murakami, and T. Yatsuo, IEEE Trans. Electron Devices 44 (12) (1997) p. 2154.

    Google Scholar 

  92. ASM Handbook of Phase Diagrams (American Society for Metals, Metals Park, OH).

  93. J.H. Harris, “Sintered Aluminum Nitride Ceramics for High-Power Electronic Applications,” J. Met. (1998) p. 56.

    Google Scholar 

  94. D. White, S.D. Keck, and T.G. Nakanishi, in Proc. 29th Int. PCIM Conf. (Europe) (1996) p. 341.

    Google Scholar 

  95. C. Zweban, “Overview: Advances in Composite Materials for Thermal Management in Electronic Packaging,” J. Met. (1998) p. 47.

    Google Scholar 

  96. J.T. Strydom, van J.D. Wyk, and A. Ferreira, IEEE Trans. Ind. Appl. 37 (2) (2001) p. 820.

    Google Scholar 

  97. J.T. Strydom and van J.D. Wyk, in Applied Power Electronics Conf. Record, APEC ’02, session 8 (March 2002).

    Google Scholar 

  98. R. Chen, J.T. Strydom, and van J.D. Wyk, in Proc. Industry Applications Soc. Conf., IAS ’01, Vol. 4 (2001) p. 2232.

    Google Scholar 

  99. M. Juzkow, Power Electron. Technol. (February 2002) p. 58.od]20110131

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, M.C. High-Performance Packaging of Power Electronics. MRS Bulletin 28, 41–50 (2003). https://doi.org/10.1557/mrs2003.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.16

Keywords

Navigation