Skip to main content
Log in

Organic-Based Magnets: Opportunities in Photoinduced Magnetism, Spintronics, Fractal Magnetism, and Beyond

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article is based on a presentation on organic-based magnets given as part of Symposium X—Frontiers of Materials Research on December 4, 2002, at the 2002 Materials Research Society Fall Meeting in Boston. The advent of organicbased magnets opened the opportunity for tuning magnetic properties by molecular design and the discovery of new phenomena that rely on the internal structure of the molecules that make up these magnets. In the past 18 years, numerous classes of organic-based ferromagnets, ferrimagnets, and spin glasses (spins essentially frozen in place without long-range order) have been reported. These materials have magnetic ordering temperatures ranging from >1 K to above room temperature and demonstrate many of the magnetic properties associated with conventional magnets. This article concentrates on new phenomena that are unique to organic-based magnets. Three of these effects—“high-temperature” light-induced magnetism, spin-polarized magnetic organic semiconductors with the potential for spintronics, and the development of fractal magnetic order—are discussed to illustrate the richness of opportunity in organic-based magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Miller, J.C. Calabrese, A.J. Epstein, R.W. Bigelow, J.H. Zhang, and W.M. Reiff, J. Chem. Soc., Chem. Commun. (1986) p. 1026

    Google Scholar 

  2. S. Chittipeddi, K.R. Cromack, J.S. Miller, and A.J. Epstein, Phys. Rev. Lett. 58 (1987) p. 2695.

    Google Scholar 

  3. J.S. Miller and A.J. Epstein, MRS Bull. 25 (11) (2000) p. 21.

    Google Scholar 

  4. A.J. Epstein, MRS Bull. 25 (11) (2000) p. 33.

    Google Scholar 

  5. D.A. Pejakovic, J.L. Manson, J.S. Miller, and A.J. Epstein, Phys. Rev. Lett. 88 057202-1 (2002).

  6. V.N. Prigodin, N.P. Raju, K.I. Pokhodnya, J.S. Miller, and A.J. Epstein, Adv. Mater. 14 (2002) p. 1230.

    Google Scholar 

  7. S.J. Etzkorn, W. Hibbs, J.S. Miller, and A.J. Epstein, Phys. Rev. Lett. 89 207201-1 (2002).

  8. A. Zheludev, A. Grand, E. Ressouche, J. Schweizer, B.G. Morin, A.J. Epstein, D.A. Dixon, and J.S. Miller, J. Am. Chem. Soc. 116 (1994) p. 7243.

    Google Scholar 

  9. A. Zheludev, E. Ressouche, J. Schweizer, P. Turek, M. Wan, and H. Wang, J. Magn. Magn. Mater. 140–144 (1995) p. 1439.

    Google Scholar 

  10. J.S. Miller and A.J. Epstein, J. Am. Chem. Soc. 109 (1987) p. 3850.

    Google Scholar 

  11. J.S. Miller, A.J. Epstein, and W.M. Reiff, Science 240 (1988) p. 40.

    Google Scholar 

  12. C.M. Wynn, M. Girtu, W.B. Brinckerhoff, K.-I. Sugiura, J.S. Miller, and A.J. Epstein, Chem. Mater. 9 (1997) p. 2156.

    Google Scholar 

  13. M. Takahashi, P. Turek, Y. Nakazawa, M. Tamura, K. Nozawa, D. Shiomi, M. Ishikawa, and M. Kinoshita, Phys. Rev. Lett. 67 (1991) p. 746; erratum, 69 (1992) p. 1290.

  14. R. Chiarelli, M.A. Novak, A. Rassat, and J.L. Tholence, Nature 363 (1993) p. 147.

    Google Scholar 

  15. P. Allemand, K. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Gruner, and J.D. Thompson, Science 253 (1991) p. 301.

    Google Scholar 

  16. A.J. Banister, N. Bricklebank, I. Lavender, J.M. Rawson, C.I. Gregory, B.K. Tanner, W. Clegg, M.R.J. Elsegood, and F. Palacio, Angew. Chem., Int. Ed. Engl. 35 (1996) p. 2533.

    Google Scholar 

  17. J.M. Manriquez, G.T. Yee, R.S. McLean, A.J. Epstein, and J.S. Miller, Science 252 (1991) p. 1415.

    Google Scholar 

  18. K.I. Pokhodnya, A.J. Epstein, and J.S. Miller, Adv. Mater. 12 (2000) p. 410.

    Google Scholar 

  19. S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, and M. Verdeguer, Nature 378 (1995) p. 701.

    Google Scholar 

  20. O. Hatlevik, W.E. Buschmann, J. Zhang, J.L. Manson, and J.S. Miller, Adv. Mater. 11 (1999) p. 914.

    Google Scholar 

  21. S.D. Holmes and G. Girolami, J. Am. Chem. Soc. 121 (1999) p. 5593.

    Google Scholar 

  22. C.R. Kmety, J.L. Manson, Q. Huang, J.W. Lynn, R.W. Erwin, J.S. Miller, and A.J. Epstein, Phys. Rev. B 60 (1999) p. 60.

    Google Scholar 

  23. C.R. Kmety, Q. Huang, J.W. Lynn, R.W. Erwin, J.L. Manson, S. McCall, J.E. Crow, K.L. Stevenson, J.S. Miller, and A.J. Epstein, Phys. Rev. B 62 (2000) p. 5576.

    Google Scholar 

  24. J.L. Manson, C.R. Kmety, F. Palacio, A.J. Epstein, and J.S. Miller, Chem. Mater. 13 (2001) p. 1068.

    Google Scholar 

  25. C.R. Kmety, J.L. Manson, S. McCall, J.E. Crow, K.L. Stevenson, and A.J. Epstein, J. Magn. Magn. Mater. 248 (2002) p. 52.

    Google Scholar 

  26. K.S. Narayan, B.G. Morin, J.S. Miller, and A.J. Epstein, Phys. Rev. B 46 (1992) p. 6195.

    Google Scholar 

  27. M.A. Girtu, C.M. Wynn, W. Fujita, K. Awaga, and A.J. Epstein, Phys. Rev. B 57 (1998) p. 11058.

    Google Scholar 

  28. M. Girtu, C. Wynn, W. Fujita, K. Awaga, and A.J. Epstein, Phys. Rev. B 61 (2000) p. 4117.

    Google Scholar 

  29. J.R. Friedman, M.P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. 76 (1996) p. 3830.

    Google Scholar 

  30. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, Nature 383 (1996) p. 145

    Google Scholar 

  31. S.M.J. Aubin, Z. Sun, L. Pardi, K. Folting, L.-C. Brunel, A.L. Rheingold, G. Christou, and D.N. Hendrickson, Inorg. Chem. 38 (1999) p. 5329

    Google Scholar 

  32. A.D. Kent, Y. Zhong, L. Bokacheva, D. Ruiz, D.N. Hendrickson, and M.P. Sarachik, J. Appl. Phys. 87 (2000) p. 5493.

    Google Scholar 

  33. E. Coronado, J.R. Galan-Mascaros, C.J. Gomez-Garcia, and V. Laukhin, Nature 408 (2000) p. 447.

    Google Scholar 

  34. C.P. Landee, M.M. Turnbull, C. Galeriu, J. Giantsidis, and F.M. Woodward, Phys. Rev. B 63 100402-1 (2001).

  35. R.J. Glauber, J. Math. Phys. 4 (1963) p. 294.

    Google Scholar 

  36. A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M.G. Pini, and M.A. Novak, Angew. Chem., Int. Ed. Engl. 40 (2001) p. 1760.

    Google Scholar 

  37. M. Mito, N. Shindo, T. Tajiri, H. Deguchi, S. Takagi, H. Miyasaka, M. Yamashita, R. Clerac, and C. Coulon, J. Magn. Magn. Mater. (2003) in press.

    Google Scholar 

  38. W. Fujita and K. Awaga, Science 286 (1999) p. 261.

    Google Scholar 

  39. W. Fujita and K. Awaga, Synth. Met. 137 (2003) p. 1263.

    Google Scholar 

  40. O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto, Science 272 (1996) p. 704.

    Google Scholar 

  41. S. Ohkoshi, S. Yorozu, O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto, Appl. Phys. Lett. 70 (1997) p. 1040.

    Google Scholar 

  42. O. Sato, Y. Einaga, A. Fujishima, and K. Hashimoto, Inorg. Chem. 38 (1999) p. 4405.

    Google Scholar 

  43. A. Goujon, O. Roubeau, F. Varret, A. Dolbecq, A. Bleuzen, and M. Verdaguer, Eur. Phys. J. B 14 (2000) p. 115.

    Google Scholar 

  44. D.A. Pejakovic, J.L. Manson, J.S. Miller, and A.J. Epstein, Phys. Rev. Lett. 85 (2000) p. 1994.

    Google Scholar 

  45. T. Kawamoto, Y. Asau, and S. Abe, Phys. Rev. Lett. 86 000348 (2001); Phys. Rev. B 60 (1999) p. 12990.

  46. H. Tokoro, S.-I. Ohkoshi, and K. Hashimoto, Appl. Phys. Lett. 82 (2003) p. 1245.

    Google Scholar 

  47. Y. Ogawa, S. Koshihara, K. Koshino, T. Ogawa, C. Urano, and H. Takagi, Phys. Rev. Lett. 84 (2000) p. 3181.

    Google Scholar 

  48. S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata, Phys. Rev. Lett. 78 (1997) p. 4617.

    Google Scholar 

  49. K. Matsuda, A. Machida, Y. Moritomo, and A. Nakamura, Phys. Rev. B 58 (1998) p. R4203.

    Google Scholar 

  50. Y. Muraoka, H. Tabata, and T. Kawau, Appl. Phys. Lett. 77 (2000) p. 4016.

    Google Scholar 

  51. D.A. Pejakovic, C. Kitamura, J.S. Miller, and A.J. Epstein, J. Appl. Phys. 91 (2002) p. 7176.

    Google Scholar 

  52. J. Zhang, J. Ensling, V. Ksenofontov, P. Gütlich, A.J. Epstein, and J.S. Miller, Angew. Chem., Int. Ed. Engl. 37 (1998) p. 657.

    Google Scholar 

  53. C.M. Wynn, M.A. Girtu, J. Zhang, J.S. Miller, and A.J. Epstein, Phys. Rev. B 58 (1998) p. 8508.

    Google Scholar 

  54. The time needed to reach saturation depends on the sample thickness. In the magnetic measurements, thicker samples were used in order to achieve good sensitivity in the entire temperature region studied, which required very long illumination. In contrast, in optical studies, saturation of the photoinduced effect is reached in several minutes.

  55. D.A. Dixon and J.S. Miller, J. Am. Chem. Soc. 109 (1987) p. 3656.

    Google Scholar 

  56. S.A. Wolf, J. Supercond. 13 (2000) p. 195.

    Google Scholar 

  57. H. Ohno and F. Matsukura, Solid State Commun. 117 (2001) p. 179.

    Google Scholar 

  58. R.S. Kohlman and A.J. Epstein, in Handbook of Conducting Polymers, edited by T.A. Skotheim, R.L. Elsenbaumer, and J.R. Reynolds (Marcel Dekker, New York, 1998) p. 85.

    Google Scholar 

  59. J.W. Blatchford and A.J. Epstein, Am. J. Phys. 64 (1996) p. 120.

    Google Scholar 

  60. For example, see Proc. Int. Conf. on Science and Technology of Synthetic Metals, edited by C.Q. Wu, Y. Cao, X. Sun, and D.B. Zhu, in Synth. Met. 133–137 (2003) pp. 1–1600.

  61. For example, see Y.Z. Wang and A.J. Epstein, Accts. Chem. Res. 32 (1999) p. 217.

    Google Scholar 

  62. For example, see F.C. Delucia Jr., T.L. Gustafson, Y.Z. Wang, D.K. Wang, and A.J. Epstein, Phys. Rev. B 65 235204 (2002).

  63. A.J. Epstein, F.-C. Hsu, N.-R. Chiou, and V.N. Prigodin, Curr. Appl. Phys. 2 (2002) p. 339.

    Google Scholar 

  64. P. Zhou, B. Morin, A.J. Epstein, and J.S. Miller, Phys. Rev. B 48 (1993) p. 1325.

    Google Scholar 

  65. P. Zhou, S.M. Long, J.S. Miller, and A.J. Epstein, Phys. Lett. A 181 (1993) p. 71.

    Google Scholar 

  66. K.I. Pokhodnya, D.A. Pejakovic, A.J. Epstein, and J.S. Miller, Phys. Rev. B 63 174408-1 (2001).

  67. N.P. Raju, T. Savrin, V.N. Prigodin, K.I. Pokhodnya, J.S. Miller, and A.J. Epstein, J. Appl. Phys. 93 (2003) p. 6799.

    Google Scholar 

  68. S. Onoda and M. Imada, J. Phys. Soc. Jpn. 70 (2001) p. 3398.

    Google Scholar 

  69. J.S. Miller, J.C. Calabrese, R.S. McLean, and A.J. Epstein, Adv. Mater. 4 (1992) p. 498.

    Google Scholar 

  70. W. Hibbs, D.K. Rittenberg, K.-I. Sugiura, B.M. Burkhart, M. Sundaralingam, A.J. Epstein, and J.S. Miller, Inorg. Chem. 40 (2001) p. 1915.

    Google Scholar 

  71. W.B. Brinckerhoff, B.G. Morin, E.J. Brandon, J.S. Miller, and A.J. Epstein, J. Appl. Phys. 79 (1996) p. 6147.

    Google Scholar 

  72. C.M. Wynn, M.A. Girtu, K.-I. Sugiura, E.J. Brandon, J.L. Manson, J.S. Miller, and A.J. Epstein, Synth. Met. 85 (1997) p. 1695.

    Google Scholar 

  73. M.A. Girtu, C.M. Wynn, K.-I. Sugiura, J.S. Miller, and A.J. Epstein, J. Appl. Phys. 81 (1997) p. 4410.

    Google Scholar 

  74. C.M. Wynn, M.A. Girtu, J.S. Miller, and A.J. Epstein, Phys. Rev. B 56 (1997) p. 315.

    Google Scholar 

  75. K. Ravindran, G.V. Rubenacker, D.N. Haunes, and J.E. Drumheller, Phys. Rev. B 40 (1989) p. 9431.

    Google Scholar 

  76. A.P. Malozemoff, S.E. Barnes, and B. Barbara, Phys. Rev. Lett. 51 (1983) p. 1704.

    Google Scholar 

  77. S.E. Barnes, A.P. Malozemoff, and B. Barbara, Phys. Rev. B 30 (1984) p. 2765.

    Google Scholar 

  78. B.G. Morin, C. Hahm, J.S. Miller, and A.J. Epstein, J. Appl. Phys. 75 (1994) p. 5782.

    Google Scholar 

  79. S. Decurtins, P. Gütlich, C.P. Köhler, H. Spiering, and A. Hauser, Chem. Phys. Lett. 105 (1984) p. 1.

    Google Scholar 

  80. O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto, Science 272 (1996) p. 704.

    Google Scholar 

  81. K. Miyano, T. Tanaka, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett. 78 (1997) p. 4257.

    Google Scholar 

Download references

Authors

Additional information

Arthur J. Epstein is a Distinguished University Professor in the Department of Physics and the Department of Chemistry at the Ohio State University. Prior to joining OSU in 1985, he was a principal scientist at Xerox Corporation’s Webster Research Center. His interests include experimental and theoretical studies of magnetic and electronic polymers and their applications. He is co-discoverer of the first organicbased ferromagnet. Epstein’s seminal studies have shown that organic-based materials can have a wide range of conventional and previously unknown magnetic states.

Epstein received a BS degree from the Polytechnic Institute of Brooklyn in 1966 and a PhD degree in physics from the University of Pennsylvania in 1971. He is a fellow of the American Physical Society and a recipient of the Distinguished Scholar Award of OSU. He has authored more than 600 publications, has been granted more than 25 patents, has co-edited a number of major conference proceedings, is editor-in-chief of the journal Synthetic Metals, and has given numerous invited talks at international conferences. He has mentored more than 30 students to the PhD degree since joining OSU. Epstein can be reached by e-maul at epstein@mps.ohio-state.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, A.J. Organic-Based Magnets: Opportunities in Photoinduced Magnetism, Spintronics, Fractal Magnetism, and Beyond. MRS Bulletin 28, 492–499 (2003). https://doi.org/10.1557/mrs2003.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.145

Keywords

Navigation