Skip to main content
Log in

Electronic Structure and Band Offsets of High-Dielectric-Constant Gate Oxides

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Identifying candidate materials to replace SiO2 as the gate dielectric for complementary metal oxide semiconductor (CMOS) applications is a difficult task. Proper assessment of the critical materials requirements is essential, and it is important to devise an approach to predict materials properties without having to make many unnecessary measurements on high-ĸ materials. Such an approach helps to eliminate unlikely candidates and focus on the most promising ones. Clearly, this type of modeling approach requires an understanding of several physical and chemical characteristics, including the bonding and electronic structure, band alignment with Si, and the nature of the dielectric constant and interface properties. We present a critical assessment of some existing methods and models of materials properties, as well as a comparison of the present modeling approach with some experimentally determined values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89 (2001) p. 5243.

    Article  CAS  Google Scholar 

  2. A.I. Kingon, J.-P. Maria, and S.K. Streiffer, Nature 406 (2000) p. 1032.

    Article  CAS  Google Scholar 

  3. J.D. Plummer and P.B. Griffin, in Proc. IEEE, Vol. 89 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 240.

    Article  CAS  Google Scholar 

  4. K.J. Hubbard and D.G. Schlom, J. Mater. Res. 11 (1996) p. 2757.

    Article  CAS  Google Scholar 

  5. J. Robertson and C.W. Chen, Appl. Phys. Lett. 74 (1999) p. 1168.

    Article  CAS  Google Scholar 

  6. J. Robertson, J. Vac. Sci. Technol., B 18 (2000) p. 1785.

    Article  CAS  Google Scholar 

  7. G. Lucovsky, J. Vac. Sci. Technol., A 19 (2001) p. 1553.

    Article  CAS  Google Scholar 

  8. R.H. French, S.J. Glass, F.S. Ohuchi, Y.N. Xu, and W.Y. Ching, Phys. Rev. B 49 (1994) p. 5153.

    Article  Google Scholar 

  9. P.W. Peacock and J. Robertson (unpublished).

  10. A. Demkov, Phys. Status Solidi B 226 (2001) p. 57.

    Article  CAS  Google Scholar 

  11. W.A. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 1999).

    Book  Google Scholar 

  12. G.M. Rignanese, X. Ginze, and A. Pasquarello, Phys. Rev. B 63 104305 (2001).

    Article  Google Scholar 

  13. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.S.P. Wong, in Proc. IEEE, Vol. 89 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 259.

    Article  CAS  Google Scholar 

  14. E. Burstein, M.H. Brodsky, and G. Lucovsky, Int. J. Quantum Chem. 1S (1967) p. 759.

    Google Scholar 

  15. J.R. Tessman, A.H. Kahn, and W. Shockley, Phys. Rev. 92 (1953) p. 890.

    Article  CAS  Google Scholar 

  16. R.D. Shannon, J. Appl. Phys. 73 (1993) p. 348.

    Article  CAS  Google Scholar 

  17. C. Kittel, Solid State Physics (John Wiley & Sons, New York, 1967) p. 382.

    Google Scholar 

  18. R.A.B. Devine and R.G. Revesz, J. Appl. Phys. 90 (2001) p. 389.

    Article  CAS  Google Scholar 

  19. R.F. Cava, W.P. Peck, and J.J. Krajewski, Nature 377 (1995) p. 215.

    Article  CAS  Google Scholar 

  20. S.A. Chambers, Y. Liang, Z. Yu, R. Droopal, and J. Ramdani, Appl. Phys. Lett. 77 (2000) p. 1662.

    Article  CAS  Google Scholar 

  21. S. Miyazaki, J. Vac. Sci. Technol. B 19 (2001) p. 2212.

    Article  CAS  Google Scholar 

  22. R. Ludeke, M.T. Cuberes, and E. Cartier, Appl. Phys. Lett. 76 (2000) p. 2886.

    Article  CAS  Google Scholar 

  23. V.V. Afanasev, M. Houssa, A. Stesmans, and M.M. Heyns, Appl. Phys. Lett. 78 (2001) p. 3073.

    Article  CAS  Google Scholar 

  24. Y. Tu and J. Tersoff, Phys. Rev. Lett. 84 (2000) p. 4393.

    Article  CAS  Google Scholar 

  25. A. Kawamoto, K. Cho, P. Griffin, and R. Dutton, J. App. Phys. 90 (2001) p. 1333.

    Article  CAS  Google Scholar 

  26. A.S. Forster, V.B. Sulimov, F.L. Gejo, A.L. Shluger, and R.M. Nieminen, Phys. Rev. B 64 224108 (2001).

    Article  Google Scholar 

  27. J.H. Stathis and E. Cartier, Phys. Rev. Lett. 72 (1994) p. 2745.

    Article  CAS  Google Scholar 

  28. W.L. Warren, K. Vanheusden, J.R. Schwank, D.M. Fleetwood, P.S. Winokur, and R.A.B. Devine, Appl. Phys. Lett. 68 (1996) p. 2993.

    Article  CAS  Google Scholar 

  29. C.H. Park and D.J. Chadi, Phys. Rev. Lett. 84 (2000) p. 4717.

    Article  CAS  Google Scholar 

  30. M. Houssa, M. Naili, M.M. Heyns, and A. Stesmans, J. Appl. Phys. 89 (2001) p. 792.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, J. Electronic Structure and Band Offsets of High-Dielectric-Constant Gate Oxides. MRS Bulletin 27, 217–221 (2002). https://doi.org/10.1557/mrs2002.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.74

Keywords

Navigation