Skip to main content

Advertisement

Log in

Computational Modeling and Simulation for Rechargeable Batteries

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Computational modeling is playing an increasingly important role in materials research and design. At the system level, the impact of cell design, electrode thickness, electrode morphology, new packaging techniques, and numerous other factors on battery performance can be predicted with battery simulators based on complex electrochemical transport equations. Such simulation tools have allowed the battery industry to optimize the power and energy density that can be achieved with a given set of electrode and electrolyte materials. At the materials level, first-principles calculations, which can be used to predict properties of previously unknown materials ab initio, have now made it possible to design materials for higher capacity and better stability. The state of the art in computational modeling of rechargeable batteries is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Ceder and A. Van der Ven, Electrochim. Acta 45 (1999) p. 131.

    Article  CAS  Google Scholar 

  2. M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, and J. Joannopoulos, Phys. Rev. B 56 (1997) p. 135.

    Article  Google Scholar 

  3. Results courtesy of Energizer Battery Company (www.energizer.com) and Computational Modeling Consultants Inc. (www.cmc-web.com).

  4. A. Van der Ven and G. Ceder, Phys. Rev. B 59 (1999) p. 742.

    Article  Google Scholar 

  5. J. Reed, A. Van der Ven, and G. Ceder, Electrochem. Solid-State Lett. 4 (2001) p. A78.

    Article  CAS  Google Scholar 

  6. B. Ammundsen and J. Paulsen, Adv. Mater. 13 (2001) p. 943.

    Article  CAS  Google Scholar 

  7. Z. Lu, D.D. MacNeil, and J.R. Dahn, Electrochem. Solid-State Lett. 4 (2001) p. A191.

    Article  CAS  Google Scholar 

  8. T. Ohzuku and Y. Makimura, Chem. Lett. 8 (2001) p. 744.

    Article  Google Scholar 

  9. A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner, Phys. Rev. B 58 (1998) p. 2975

    Article  Google Scholar 

  10. J.N. Reimers and J.R. Dahn, J. Electrochem. Soc. 139 (1992) p. 2091.

    Article  CAS  Google Scholar 

  11. A. Van der Ven and G. Ceder, Electrochem. Solid-State Lett. 3 (2000) p. 301.

    Google Scholar 

  12. H. Wang, Y.-I. Jang, B. Huang, D.R. Sadoway, and Y.-M. Chiang, J. Electrochem. Soc. 146 (1999) p. 473.

    Article  CAS  Google Scholar 

  13. A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68 (1996) p. 13.

    Article  CAS  Google Scholar 

  14. J. Newman and W. Tiedemann, AIChE J. 21 (1975) p. 25.

    Article  CAS  Google Scholar 

  15. M. Doyle and J. Newman, Electrochim. Acta 40 (1995) p. 2191.

    Article  CAS  Google Scholar 

  16. G.G. Botte, V.R. Subramanian, and R.E. White, Electrochim. Acta 45 (2000) p. 2595.

    Article  CAS  Google Scholar 

  17. K.E. Thomas, J. Newman, and R.M. Darling, in Advances in Lithium-Ion Batteries, edited by W. van Schalkwijk and B. Scrosati (Kluwer Academic/Plenum Publishers, New York, 2002) p. 345.

  18. M. Doyle, J.P. Meyers, and J. Newman, J. Electrochem. Soc. 147 (2000) p. 99.

    Article  CAS  Google Scholar 

  19. C.S. Desai and J.F. Abel, Introduction to the Finite Element Method: A Numerical Method for Engineering Analysis (Van Nostrand Reinhold, New York, 1998).

    Google Scholar 

  20. J.P. Meyers, M. Doyle, R.M. Darling, and J. Newman, J. Electrochem. Soc. 147 (2000) p. 2930.

    Article  CAS  Google Scholar 

  21. M. Doyle and J. Newman, in Tutorials in Electrochemical Engineering—Mathematical Modeling, edited by R.F. Savinell, J.M. Fenton, A.C. West, S.L. Scanlon, and J. Weidner (The Electrochemical Society, Seattle, 1999) p. 144.

  22. J. Newman, J. Electrochem. Soc. 142 (1995) p. 97.

    Article  CAS  Google Scholar 

  23. T.F. Fuller, M. Doyle, and J. Newman, J. Electrochem. Soc. 141 (1994) p. 1.

    Article  CAS  Google Scholar 

  24. M. Doyle and Y. Fuentes, “Computer Simulations of a Li-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs,” J. Electrochem. Soc. (2002) submitted for publication.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceder, G., Doyle, M., Arora, P. et al. Computational Modeling and Simulation for Rechargeable Batteries. MRS Bulletin 27, 619–623 (2002). https://doi.org/10.1557/mrs2002.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.198

Keywords

Navigation