Abstract
Computational modeling is playing an increasingly important role in materials research and design. At the system level, the impact of cell design, electrode thickness, electrode morphology, new packaging techniques, and numerous other factors on battery performance can be predicted with battery simulators based on complex electrochemical transport equations. Such simulation tools have allowed the battery industry to optimize the power and energy density that can be achieved with a given set of electrode and electrolyte materials. At the materials level, first-principles calculations, which can be used to predict properties of previously unknown materials ab initio, have now made it possible to design materials for higher capacity and better stability. The state of the art in computational modeling of rechargeable batteries is reviewed.
References
G. Ceder and A. Van der Ven, Electrochim. Acta 45 (1999) p. 131.
M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, and J. Joannopoulos, Phys. Rev. B 56 (1997) p. 135.
Results courtesy of Energizer Battery Company (www.energizer.com) and Computational Modeling Consultants Inc. (www.cmc-web.com).
A. Van der Ven and G. Ceder, Phys. Rev. B 59 (1999) p. 742.
J. Reed, A. Van der Ven, and G. Ceder, Electrochem. Solid-State Lett. 4 (2001) p. A78.
B. Ammundsen and J. Paulsen, Adv. Mater. 13 (2001) p. 943.
Z. Lu, D.D. MacNeil, and J.R. Dahn, Electrochem. Solid-State Lett. 4 (2001) p. A191.
T. Ohzuku and Y. Makimura, Chem. Lett. 8 (2001) p. 744.
A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner, Phys. Rev. B 58 (1998) p. 2975
J.N. Reimers and J.R. Dahn, J. Electrochem. Soc. 139 (1992) p. 2091.
A. Van der Ven and G. Ceder, Electrochem. Solid-State Lett. 3 (2000) p. 301.
H. Wang, Y.-I. Jang, B. Huang, D.R. Sadoway, and Y.-M. Chiang, J. Electrochem. Soc. 146 (1999) p. 473.
A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68 (1996) p. 13.
J. Newman and W. Tiedemann, AIChE J. 21 (1975) p. 25.
M. Doyle and J. Newman, Electrochim. Acta 40 (1995) p. 2191.
G.G. Botte, V.R. Subramanian, and R.E. White, Electrochim. Acta 45 (2000) p. 2595.
K.E. Thomas, J. Newman, and R.M. Darling, in Advances in Lithium-Ion Batteries, edited by W. van Schalkwijk and B. Scrosati (Kluwer Academic/Plenum Publishers, New York, 2002) p. 345.
M. Doyle, J.P. Meyers, and J. Newman, J. Electrochem. Soc. 147 (2000) p. 99.
C.S. Desai and J.F. Abel, Introduction to the Finite Element Method: A Numerical Method for Engineering Analysis (Van Nostrand Reinhold, New York, 1998).
J.P. Meyers, M. Doyle, R.M. Darling, and J. Newman, J. Electrochem. Soc. 147 (2000) p. 2930.
M. Doyle and J. Newman, in Tutorials in Electrochemical Engineering—Mathematical Modeling, edited by R.F. Savinell, J.M. Fenton, A.C. West, S.L. Scanlon, and J. Weidner (The Electrochemical Society, Seattle, 1999) p. 144.
J. Newman, J. Electrochem. Soc. 142 (1995) p. 97.
T.F. Fuller, M. Doyle, and J. Newman, J. Electrochem. Soc. 141 (1994) p. 1.
M. Doyle and Y. Fuentes, “Computer Simulations of a Li-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs,” J. Electrochem. Soc. (2002) submitted for publication.
Rights and permissions
About this article
Cite this article
Ceder, G., Doyle, M., Arora, P. et al. Computational Modeling and Simulation for Rechargeable Batteries. MRS Bulletin 27, 619–623 (2002). https://doi.org/10.1557/mrs2002.198
Published:
Issue Date:
DOI: https://doi.org/10.1557/mrs2002.198