Skip to main content
Log in

Diffusional Creep: Stresses and Strain Rates in Thin Films and Multilayers

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In this article, we discuss creep deformation as it relates to thin films and multilayer foils. We begin by reviewing experimental techniques for studying creep deformation in thin-film geometries, listing the pros and cons of each; then we discuss the use of deformation-mechanism maps for recording and understanding observed creep behavior. We include a number of cautionary remarks regarding the impact of microstructural stability, zero-creep stresses, and transient-creep strains on stress-strain rate relationships, and we finish by reviewing the current state of knowledge for creep deformation in thin films. This includes both thin films that are heated on substrates as well as multilayer films that are tested as freestanding foils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SchiøJ. tz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen, Phys. Rev. B 60 (1999) p. 11971.

    Google Scholar 

  2. W.N. Sharpe, B. Yuan, and R.L. Edwards, J. Microelectromech. Sys. 6 (1997) p. 193.

    Google Scholar 

  3. O. Kraft and C.A. Volkert, Adv. Eng. Mater. 3 (2001) p. 99.

    Google Scholar 

  4. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, J. Mater. Res. 3 (1988) p. 931.

    Google Scholar 

  5. W.D. Nix, Metall. Trans. A 20A (1989) p. 2217.

    Google Scholar 

  6. M. Hommel, O. Kraft, and E. Arzt, J. Mater. Res. 14 (1999) p. 2373.

    Google Scholar 

  7. A.G. Atkins, A. Silverio, and D. Tabor, J. Inst. Met. 94 (1966) p. 369.

    Google Scholar 

  8. S.N.G. Chu and J.C.M. Li, J. Mater. Sci. 12 (1977) p. 2200.

    Google Scholar 

  9. D. Stone, W.R. Lafontaine, P. Alexopoulos, and C.Y. Li, J. Mater. Res. 3 (1988) p. 141.

    Google Scholar 

  10. V. Raman and R. Berriche, J. Mater. Res. 7 (1992) p. 627.

    Google Scholar 

  11. M.D. Thouless, Acta Metall. Mater. 41 (1993) p. 1057.

    Google Scholar 

  12. K.T. Miller, F.F. Lange, and D.B. Marshall, J. Mater. Res. 5 (1990) p. 151.

    Google Scholar 

  13. F.Y. Genin, W.W. Mullins, and P. Wynblatt, Acta Metall. Mater. 40 (1992) p. 3239.

    Google Scholar 

  14. D.J. Srolovitz and S.A. Safran, J. Appl. Phys. 60 (1986) p. 247.

    Google Scholar 

  15. D.J. Srolovitz and S.A. Safran, J. Appl. Phys. 60 (1986) p. 255.

    Google Scholar 

  16. D. Josell and W.C. Carter, in Creep and Stress Relaxation in Miniature Structures and Components, edited by H.D. Merchant (The Minerals, Metals, and Materials Society, Warrendale, PA, 1996) p. 271.

  17. D. Josell, S.R. Coriell, and Mc G.B. Fadden, Acta Metall. Mater. 43 (1995) p. 1987.

    Google Scholar 

  18. J.P. Fain, R. Banerjee, D. Josell, P.M. Anderson, H. Fraser, N. Tymiak, and W. Gerberich, in Nanophase and Nanocomposite Materials III, edited by S. Komarneni, J.C. Parker, and H. Hahn (Mater. Res. Soc. Symp. Proc. 581, Warrendale, PA, 2000) p. 603.

    Google Scholar 

  19. D. Josell, W.C. Carter, and J.E. Bonevich, Nanostruct. Mater. 12 (1999) p. 387.

    Google Scholar 

  20. A.C. Lewis, A.B. Mann, D. Josell, J. Tapson, and T.P. Weihs, in Interfacial Engineering for Optimized Properties II, edited by C.B. Carter, E.L. Hall, S.R. Nutt, and C.L. Briant (Mater. Res. Soc. Symp. Proc. 586, Warrendale, PA, 2000) p. 249.

    Google Scholar 

  21. T.H. Courtney, Mechanical Behavior of Materials (McGraw-Hill, New York, 2000).

    Google Scholar 

  22. G.B. Gibbs, Philos. Mag. 13 (1966) p. 589.

    Google Scholar 

  23. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, New York, 1982).

    Google Scholar 

  24. D. Josell and F. Spaepen, Acta Metall. Mater. 41 (1993) p. 3007.

    Google Scholar 

  25. D. Josell and F. Spaepen, Acta Metall. Mater. 41 (1993) p. 3017.

    Google Scholar 

  26. D. Josell and Z.L. Wang, in Thin Films: Stresses and Mechanical Properties V, edited by S.P. Baker, C.A. Ross, P.H. Townsend, C.A. Volkert, and BøP. rgesen (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, 1995) p. 357.

    Google Scholar 

  27. K.E. Harris and A.H. King, Acta Mater. 46 (1998) p. 6195.

    Google Scholar 

  28. A.C. Lewis, A.B. Mann, D. van Heerden, D. Josell, and T.P. Weihs, in Influences of Interface and Dislocation Behavior on Microstructure Evolution, edited by M. Aindow, M.D. Asta, M.V. Glazov, D.L. Medlin, A.D. Rollet, and M. Zaiser (Mater. Res. Soc. Symp. Proc. 652, Warrendale, PA, 2001) p. Y1.3.1.

    Google Scholar 

  29. C.H. Shang, R.C. Cammarata, C.L. Chien, and T.P. Weihs, Acta. Mater. (2001) to be submitted.

    Google Scholar 

  30. O.D. Sherby and P.M. Burke, Prog. Mater. Sci. 13 (1968) p. 325.

    Google Scholar 

  31. F.R. Brotzen, C.T. Rosenmayer, C.G. Cofer, and R.J. Gale, Vacuum 41 (1990) p. 1287.

    Google Scholar 

  32. M.D. Thouless, J. Gupta, and J.M.E. Harper, J. Mater. Res. 8 (1993) p. 1845.

    Google Scholar 

  33. R.-M. Keller, S.P. Baker, and E. Arzt, Acta Mater. 47 (1999) p. 415.

    Google Scholar 

  34. E. Arzt, G. Dehm, P. Gumbsch, O. Kraft, and D. Weiss, Prog. Mater. Sci. 46 (2001) p. 283.

    Google Scholar 

  35. D. Weiss, H. Gao, and E. Arzt, Acta Mater. 49 (2001) p. 2395.

    Google Scholar 

  36. H. Gao, L. Zhang, W.D. Nix, C.V. Thompson, and E. Arzt, Acta Mater. 47 (1999) p. 2865.

    Google Scholar 

  37. Y.-L. Shen and S. Suresh, Acta Metall. Mater. 43 (1995) p. 3915.

    Google Scholar 

  38. Y.-L. Shen and S. Suresh, J. Mater. Res. 10 (1995) p. 1200.

    Google Scholar 

  39. Y.-L. Shen and S. Suresh, Acta Mater. 44 (1996) p. 1337.

    Google Scholar 

  40. V. Pelosin and J. Hillairet, Nanostruct. Mater. 4 (1994) p. 229.

    Google Scholar 

  41. V. Pelosin, J. Hillairet, and B. Rodmacq, J. Phys.: Condens. Matter 6 (1994) p. 1099. Strain rate obtained from creep data in Figure 8.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Josell, D., Weihs, T.P. & Gao, H. Diffusional Creep: Stresses and Strain Rates in Thin Films and Multilayers. MRS Bulletin 27, 39–44 (2002). https://doi.org/10.1557/mrs2002.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.18

Keywords

Navigation