Skip to main content
Log in

Applications of Fiber Bragg Grating Sensors in the Composite Industry

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Optical-fiber sensors based on fiber Bragg gratings (FBGs) provide accurate, nonintrusive, and reliable remote measurements of temperature, strain, and pressure, and they are immune to electromagnetic interference. FBGs are extensively used in telecommunications, and their manufacture is now cost-effective. As sensors, FBGs find many industrial applications in composite structures used in the civil engineering, aeronautics, train transportation, space, and naval sectors. Tiny FBG sensors embedded in a composite material can provide in situ information about polymer curing (strain, temperature, refractive index) in an elegant and nonintrusive way. Great improvements in composite manufacturing processes such as resin transfer molding (RTM) and resin film infusion (RFI) have been obtained through the use of these sensors. They can also be used in monitoring the “health” of a composite structure and in impact detection to evaluate, for example, the airworthiness of aircraft. Finally, FBGs may be used in instrumentation as composite extensometers or strain rosettes, primarily in civil engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sansonetti, P. Ferdinand, D.H. Bowen, M. Crowther, B. Culshaw, M. Martinelli, B. Fornari et al., in Proc. SPIE Conf. on Fiber Optic Smart Structures and Skins II (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1989).

    Google Scholar 

  2. P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg Grating Sensors in Europe,” 12th Int. Conf. on Optical Fiber Sensors (OFS-12), Williamsburg, VA, October 28–31, 1997, p. 14.

    Google Scholar 

  3. P.A. Crosby and G.P. Fernando, in Optical Fiber Sensor Technology, Vol. 3: Applications and Systems, edited by K.T.V. Grattan and B.T. Meggitt (Kluwer Academic Publishers, New York, 1999).

    Google Scholar 

  4. G. Laffont and P. Ferdinand, Electron. Lett. 37 (5) (2001) p. 289.

    Article  CAS  Google Scholar 

  5. G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12 (7) (2001) p. 765.

    Article  CAS  Google Scholar 

  6. P. Ferdinand, O. Ferragu, J.-L. Lechien, B. Lescop, V. Marty, S. Rougeault, G. Pierre, C. Renouf, B. Jarret, G. Kotrotsios, M.R.H. Voet, and D. Toscano, “Mine Operating Accurate STABILity Control with Optical Fiber Sensing and Bragg Grating Technology: The Brite-EURAM STABILOS Project,” 10th Int. Conf. on Optical Fiber Sensor (OFS-10), Glasgow, October 11–13, 1994, p. 162; J. Lightwave Technol. 13 (7) (1995) p. 1303.

    Google Scholar 

  7. F. Ansari, ed., Proc. Int. Workshop on Fiber Optic Sensors for Construction Materials and Bridges (Technomic, Lancaster, PA, 1998).

    Google Scholar 

  8. U. Senhauser, BrôR. nnimann, P. Mauron, and P.M. Nellen, in Proc. Int. Workshop on Fiber Optic Sensors for Construction Materials and Bridges, edited by F. Ansari (Technomic, Lancaster, PA, 1998) p. 117.

  9. S.T. Vohra, M.D. Todd, G.A. Johnson, C.C. Chang, and B.A. Danver, “Fiber Bragg Grating Sensor System for Civil Structure Monitoring: Applications and Field Test,” 13th Int. Conf. on Optical Fiber Sensor (OFS-13), Kyongju, Korea, April 12–16, 1999, Paper No. Tu2–1, p. 32.

    Google Scholar 

  10. J. Seim, E. Udd, W. Schulz, and H.M. Laylor, “Composite Strengthening and Instrumentation of the Horse Tail Bridge with Long Gauge Length Fiber Bragg Grating Strain Sensors,” 13th Int. Conf. on Optical Fiber Sensor (OFS-13), Kyongju, Korea, April 12–16, 1999, Paper No. P1–3, p. 196.

    Google Scholar 

  11. J. Seim, E. Udd, W. Schulz, and H.M. Laylor, in Proc. SPIE, Vol. 3671 (SPIE—The International Society for Optical Engineering, Belling-ham, WA, 1999) p. 128.

    Article  Google Scholar 

  12. R.M. Measures, T. Alavie, R. Maaskant, S. Huang, and M. LeBlanc, “Bragg Grating Fiber Optic Sensing for Bridges and Other Structures,” 2nd European Conf. on Smart Structures and Materials, Glasgow, 1994, p. 162.

    Chapter  Google Scholar 

  13. R.A. Livingstone, in Proc. Int. Workshop on Fiber Optic Sensors for Construction Materials and Bridges, edited by F. Ansari (Technomic, Lancaster, PA, 1998) p. 3.

  14. P. Ferdinand, S. Magne, V. Marty, S. Rougeault, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, P. Niay, J.F. Bayon, T. Georges, and M. Monerie, “Optical Fiber Bragg Grating Sensors for Structure Monitoring within the Nuclear Power Plants,” presented at the Optical Fiber Sensing and Systems in Nuclear Environments Symposium, SCK-CEN, Mol, Belgium, October 17–18, 1994.

    Google Scholar 

  15. V. Dewynter-Marty, S. Rougeault, P. Ferdinand, D. Chauvel, E. Toppani, M. Leygonie, B. Jarret, and P. Fenaux, “Concrete Strain Measurements and Crack Detection with Surface and Embedded Bragg Grating Extensometers,” 12th Int. Conf. on Optical Fiber Sensor (OFS-12), Williamsburg, VA, October 28–31, 1997, p. 600.

    Google Scholar 

  16. P. Ferdinand, S. Magne, V. Dewynter-Marty, L. Pichon, S. Rougeault, and M. Bugaud, “Optical Fiber Sensors Provide New Means for Measurement and Monitoring within the Nuclear Industry,” presented at the Int. Nuclear Congress ENC-98, Nice, France, October 25–28, 1998.

    Google Scholar 

  17. A. Ball, The Newsletter of the Monitor Consortium (1) (Autumn/Winter 1996) and (2) (Autumn/Winter 1997).

    Google Scholar 

  18. A. Ball, in Proc. 4th ESSM and 2nd MIMR Conf., edited by G.B. Tomlinson and W.A. Bullough (Institute of Physics Publishing, Bristol, 1998) p. 435.

  19. E. Bocherens, S. Bourasseau, V. Dewynter-Marty, S. Py, M. Dupont, P. Ferdinand, and H. Berenger, in Proc. 4th ESSM and 2nd MIMR Conf., edited by G.B. Tomlinson and W.A. Bullough (Institute of Physics Publishing, Bristol, 1998) p. 381.

  20. D. Balageas, S. Bourasseau, M. Dupont, E. Bocherens, V. Dewynter-Marty, and P. Ferdinand, J. Intell. Mater. Sys. Struct. 11 (2000) (Part 6) p. 426.

    Article  Google Scholar 

  21. J.R. Dunphy, G. Meltz, F.P. Lamm, and W.W. Morey, in Proc. SPIE, Vol. 1370 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1990) p. 116.

    Article  Google Scholar 

  22. Dewynter-V. Marty, S. Rougeault, P. Ferdinand, M. Bugaud, P. Brion, G. Marc, and P. Plouvier, “4 technologies de CFO pour le suivi de fabrication de matériaux composites,” presented at the 19th Journées Nationales d’Optique Guidée (JNOG 1999), December 6–8, 1999, Limoges, France (in French).

    Google Scholar 

  23. Dewynter-V. Marty, S. Rougeault, P. Ferdinand, M. Bugaud, P. Brion, G. Marc, and P. Plouvier, “Contrôle de la fabrication de pièces en matériaux composites réalisées par procédé RTM à l’aide de capteurs à réseaux de Bragg,” presented at the 20th Journées Nationales d’Optique Guidée (JNOG 2000), November 20–22, 2000, Toulouse, France (in French).

    Google Scholar 

  24. D. Ness, in Proc. 22nd Int. SAMPE Europe Conf. Soc. for the Advancement of Materials and Process Engineering (La Défense, Paris, 2001) p. 89.

    Google Scholar 

  25. L. Maurin, J. Boussoir, S. Rougeault, M. Bugaud, P. Ferdinand, A. Landrot, T. Chauvin, and Y.-H. Grunevald, “Instrumentation de Bogie composite par capteurs à fibers optiques à réseaux de Bragg,” presented at the 20th Journées Nationales d’Optique Guidée (JNOG 2000), November 20–22, 2000, Toulouse, France (in French).

    Google Scholar 

  26. S. Magne, S. Rougeault, M. Vilela, and P. Ferdinand, Appl. Opt. 36 (36) (1997) p. 9437.

    Article  CAS  Google Scholar 

  27. S. Magne, S. Rougeault, M. Vilela, and P. Ferdinand, “Rosettes à réseaux de Bragg et applications,” presented at the Journées Nationales d’Optique Guidée (JNOG 1996), October 28–30, 1996, Nice, France (in French).

    Google Scholar 

  28. P. Ferdinand, S. Magne, V. Dewynter-Marty, S. Rougeault, and M. Bugaud, “Optical Fiber Bragg Grating Sensors Make Composite Structures Smart,” presented at the SAMPE Europe Conf. ’99, Paris, April 1999.

    Google Scholar 

  29. M. Bugaud, V. Dewynter-Marty, S. Magne, and P. Ferdinand, French Patent No. 2,791,768 (June 10, 2000).

    Google Scholar 

  30. K. Pran, G.B. Havgard, R. Palmstrom, G. Wang, G.A. Johnson, B.A. Danver, and S.T. Vohra, “Sea-Test of 27 Channel Fiber Bragg Grating Sensor System on Air Cushion Catamaran,” 13th Int. Conf. on Optical Fiber Sensor (OFS-13), Kyongju, Korea, April 12–16, 1999, Paper No. W1–3, p. 145.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferdinand, P., Magne, S., Dewynter-Marty, V. et al. Applications of Fiber Bragg Grating Sensors in the Composite Industry. MRS Bulletin 27, 400–407 (2002). https://doi.org/10.1557/mrs2002.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.126

Keywords

Navigation