Skip to main content
Log in

Changes in short- and medium-range order in metallic liquids during undercooling

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

It has been widely speculated that dominant motifs, such as short-range icosahedral order, can influence glass formation and the properties of glasses. Experimental data on both fragile and strong undercooled liquids show corresponding changes in their thermophysical properties consistent with increasing development of a network of interconnect motifs based on molecular dynamics. Describing these regions of local order, how they connect, and how they are related to property changes have been challenging issues, both computationally and experimentally. Yet the consensus is that metallic liquids develop interconnected medium-range order consisting of some regions with lower mobility with deeper undercooling. Less well understood is how these motifs (or “crystal genes”) in the liquid can inhibit nucleation in the deeply undercooled liquid or influence phase selection upon devitrification. These motifs tend to have local packing unlike stable compounds with icosahedral order tending to dominate the best glass formers. The underlying kinetic and thermodynamic forces that guide the formation of these motifs and how they interconnect during undercooling remain open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. J.J. Kruzic, Adv. Eng. Mater. 18 (8), 1308 (2016).

    Article  CAS  Google Scholar 

  2. H.J. Lee, T. Cagin, W.L. Johnson, W.A. Goddard, J. Chem Phys. 119 (18), 9858 (2003).

    Article  CAS  Google Scholar 

  3. D.B. Miracle, O.N. Senkov, Mater. Sci. Eng. A A347 (1), 50 (2003).

    Article  CAS  Google Scholar 

  4. D.B. Miracle, Nat. Mater. 3, 697 (2004).

    Article  CAS  Google Scholar 

  5. Y.J. Lv, M. Chen, Int. J Mol. Sci. 12 (1), 278 (2011).

    Article  CAS  Google Scholar 

  6. A. Ilbagi, P.D. Khatibi, H. Henein, C.A. Gandin, D.M. Herlach, Proc. 1st Int. Conf. 3d Mater. Sci. 67 (2012).

    Book  Google Scholar 

  7. Z.P. Lu, J. Shen, D.W. Xing, J.F. Sun, C.T. Liu, Appl. Phys. Lett. 89 (7), 071910 (2006).

    Article  CAS  Google Scholar 

  8. T.Q. Wen, Y. Sun, B.L. Ye, L. Tang, Z.J. Yang, K.M. Ho, C.Z. Wang, N. Wang, J. Appl. Phys. 123 (4), 045108 (2018).

    Article  CAS  Google Scholar 

  9. L.H. Xiong, X.D. Wang, Q. Yu, H. Zhang, F. Zhang, Y. Sun, Q.P. Cao, H.L. Xie, T.Q. Xiao, D.X. Zhang, C.Z. Wang, K.M. Ho, Y. Ren, J.Z. Jiang, Acta Mater. 128, 304 (2017).

    Article  CAS  Google Scholar 

  10. C. Yildirim, M. Kutsal, R.T. Ott, M.F. Besser, M.J. Kramer, Y.E. Kalay, Mater. Des. 112, 479 (2016).

    Article  CAS  Google Scholar 

  11. N.A. Mauro, W. Fu, J.C. Bendert, Y.Q. Cheng, E. Ma, K.F. Kelton, J. Chem. Phys. 137 (4) (2012).

    Google Scholar 

  12. P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K.K. Sahu, K.F. Kelton, N.A. Mauro, Z. Nussinov, Eur. Phys. J. E 34 (9), 105 (2011).

    Article  CAS  Google Scholar 

  13. X.J. Liu, Y. Xu, Z.P. Lu, X. Hui, G.L. Chen, G.P. Zheng, C.T. Liu, Acta Mater. 59 (16), 6480 (2011).

    Article  CAS  Google Scholar 

  14. M. Lee, C.M. Lee, K.R. Lee, E. Ma, J.C. Lee, Acta Mater. 59 (1), 159 (2011).

    Article  CAS  Google Scholar 

  15. K. Georgarakis, D.V. Louzguine-Luzgin, J. Antonowicz, G. Vaughan, A.R. Yavari, T. Egami, A. Inoue, Acta Mater. 59 (2), 708 (2011).

    Article  CAS  Google Scholar 

  16. X.J. Liu, Y. Xu, X. Hui, Z.P. Lu, F. Li, G.L. Chen, J. Lu, C.T. Liu, Phys. Rev. Lett. 105 (15), 155501 (2010).

    Article  CAS  Google Scholar 

  17. C.A. Angell, Science 267 (5206), 1924 (1995).

    Article  CAS  Google Scholar 

  18. R. Busch, J. Schroers, W.H. Wang, MRS Bull. 32 (8), 620 (2007).

    Article  CAS  Google Scholar 

  19. C.A. Angell, MRS Bull. 33 (5), 544 (2008).

    Article  CAS  Google Scholar 

  20. A. Takeuchi, H. Kato, A. Inoue, Intermetallics 18 (4), 406 (2010).

    Article  CAS  Google Scholar 

  21. C. Way, P. Wadhwa, R. Busch, Acta Mater. 55 (9), 2977 (2007).

    Article  CAS  Google Scholar 

  22. K.F. Kelton, A.K. Gangopadhyay, Powder Diffr. 20 (2), 87 (2005).

    Article  CAS  Google Scholar 

  23. M. Stolpe, I. Jonas, S. Wei, Z. Evenson, W. Hembree, F. Yang, A. Meyer, R. Busch, Phys. Rev. B 93 (1), 014201 (2016).

    Article  CAS  Google Scholar 

  24. S. Wei, M. Stolpe, O. Gross, W. Hembree, S. Hechler, J. Bednarcik, R. Busch, P. Lucas, Acta Mater. 129, 259 (2017).

    Article  CAS  Google Scholar 

  25. K. Ito, C.T. Moynihan, C.A. Angell, Nature 398 (6727), 492 (1999).

    Article  CAS  Google Scholar 

  26. A. Inoue, B.L. Shen, A. Takeuchi, Mater. Sci. Eng. A 441 (1), 18 (2006).

    Article  CAS  Google Scholar 

  27. H. Wen, M.J. Cherukara, M.V. Holt, Ann. Rev. Mater. Res. 49 (1), 389 (2019).

    Article  CAS  Google Scholar 

  28. A.K. Gangopadhyay, G.W. Lee, K.F. Kelton, J.R. Rogers, A.I. Goldman, D.S. Robinson, T.J. Rathz, R.W. Hyers, Rev. Sci. Instrum. 76 (7), 073901 (2005).

    Article  CAS  Google Scholar 

  29. D. Holland-Moritz, T. Schenk, P. Convert, T. Hansen, D.M. Herlach, Meas. Sci. Technol. 16 (2), 372 (2005).

    Article  CAS  Google Scholar 

  30. A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A.R. Yavari, T. Sakurai, M. Chen, Nat. Mater. 10 (1), 28 (2011).

    Article  CAS  Google Scholar 

  31. T. Egami, S.J.L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 1st ed. (Pergamon Press, Oxford, UK, 2003), p. 404.

    Google Scholar 

  32. M.M.J. Treacy, J.M. Gibson, L. Fan, D.J. Paterson, I. McNulty, Rep. Prog. Phys. 68 (12), 2899 (2005).

    Article  CAS  Google Scholar 

  33. A.C.Y. Liu, M.J. Neish, G. Stokol, G.A. Buckley, L.A. Smillie, M.D. de Jonge, R.T. Ott, M.J. Kramer, L. Bourgeois, Phys. Rev. Lett. 110 (20), 205505 (2013).

    Article  CAS  Google Scholar 

  34. L. He, P. Zhang, M.F. Besser, M.J. Kramer, P.M. Voyles, Microsc. Microanal. 21 (4), 1026 (2015).

    Article  CAS  Google Scholar 

  35. P. Zhang, L. He, M.F. Besser, Z. Liu, J. Schroers, M.J. Kramer, P.M. Voyles, Ultramicroscopy 178, 125 (2017).

    Article  CAS  Google Scholar 

  36. S.P. Chen, T. Egami, V. Vitek, Phys. Rev. B 37 (5), 2440 (1988).

    Article  CAS  Google Scholar 

  37. W. Kob, H.C. Andersen, Phys. Rev. Lett. 73 (10), 1376 (1994).

    Article  CAS  Google Scholar 

  38. L.V. Woodcock, Ann. N.Y. Acad. Sci. 371 (1), 274 (1981).

    Article  CAS  Google Scholar 

  39. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28 (2), 784 (1983).

    Article  CAS  Google Scholar 

  40. G. Kresse, J. Hafner, Phys. Rev. B 49 (20), 14251 (1994).

    Article  CAS  Google Scholar 

  41. Ch.E. Lekka, A. Ibenskas, A.R. Yavari, G.A. Evangelakis, Appl. Phys. Lett. 91 (21), 214103 (2007).

    Article  CAS  Google Scholar 

  42. H.W. Sheng, E. Ma, M.J. Kramer, JOM 64 (7), 856 (2012).

    Article  CAS  Google Scholar 

  43. J.L. Finney, Proc. R. Soc. Lond. A 319 (1539), 479 (1970).

    Article  CAS  Google Scholar 

  44. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. Lett. 47 (18), 1297 (1981).

    Article  CAS  Google Scholar 

  45. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 90 (8), 1585 (1986).

    Article  CAS  Google Scholar 

  46. T. Egami, T. Tomida, D. Kulp, V. Vitek, J. Non Cryst. Solids 156, 63 (1993).

    Article  Google Scholar 

  47. X.W. Fang, C.Z. Wang, Y.X. Yao, Z.J. Ding, K.M. Ho, Phys. Rev. B 82 (18), 184204 (2010).

    Article  CAS  Google Scholar 

  48. X.W. Fang, C.Z. Wang, S.G. Hao, M.J. Kramer, Y.X. Yao, M.I. Mendelev, Z.J. Ding, R.E. Napolitano, K.M. Ho, Sci. Rep. 1, 194 (2011).

    Article  CAS  Google Scholar 

  49. F.C. Frank, Proc. R. Soc. Lond. A 215 (1120), 43 (1952).

    Article  CAS  Google Scholar 

  50. C.L. Briant, J.J. Burton, Phys. Status Solidi B 85 (1), 393 (1978).

    Article  CAS  Google Scholar 

  51. F. Spaepen, Nature 408 (6814), 781 (2000).

    Article  CAS  Google Scholar 

  52. J.L. Walter, S.F. Bartram, R.R. Russell, Met. Trans. A 9A, 803 (1978).

    Article  CAS  Google Scholar 

  53. C.C. Hays, C.P. Kim, W.L. Johnson, Appl. Phys. Lett. 75 (8), 1089 (1999).

    Article  CAS  Google Scholar 

  54. N. Mattern, U. Vainio, J.M. Park, J.H. Han, A. Shariq, D.H. Kim, J. Eckert, J. Alloys Compd. 509, S23 (2011).

    Article  CAS  Google Scholar 

  55. S. Schneider, P. Thiyagarajan, W.L. Johnson, Appl. Phys. Lett. 68 (4), 493 (1996).

    Article  CAS  Google Scholar 

  56. M.I. Mendelev, D.J. Sordelet, M.J. Kramer, J. Appl. Phys. 102 (4), 043501 (2007).

    Article  CAS  Google Scholar 

  57. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, Philos. Mag. 89 (2), 109 (2009).

    Article  CAS  Google Scholar 

  58. Y. Zhang, F. Zhang, C.Z. Wang, M.I. Mendelev, M.J. Kramer, K.M. Ho, Phys. Rev. B 91 (6), 064105 (2015).

    Article  CAS  Google Scholar 

  59. Y. Zhang, C.Z. Wang, M.I. Mendelev, F. Zhang, M.J. Kramer, K.M. Ho, Phys. Rev. B 91 (18), 180201 (2015).

    Article  CAS  Google Scholar 

  60. F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, H. Teichler, Rev. Mod. Phys. 75 (1), 237 (2003).

    Article  Google Scholar 

  61. Y.X. Huang, L. Huang, C.Z. Wang, M.J. Kramer, K.M. Ho, J. Phys. Condens. Matter 28 (8), 085102 (2016).

    Article  CAS  Google Scholar 

  62. J. Hwang, Z.H. Melgarejo, Y.E. Kalay, I. Kalay, M.J. Kramer, D.S. Stone, and P.M. Voyles, Phys. Rev. Lett. 108 (19), 195505 (2012).

    Article  CAS  Google Scholar 

  63. R.L. McGreevy, L. Pusztai, Mol. Simul. 1 (6), 359 (1988).

    Article  Google Scholar 

  64. L. Pusztai, E. Svab, J. Phys. Condens. Matter 5 (47), 8815 (1993).

    Article  CAS  Google Scholar 

  65. M.I. Mendelev, M.J. Kramer, J. Appl. Phys. 107 (7), 2010.

    Google Scholar 

  66. M.I. Baskes, J.S. Nelson, A.F. Wright, Phys. Rev. B 40 (9), 6085 (1989).

    Article  CAS  Google Scholar 

  67. D.R. Nelson, M. Widom, Nucl. Phys. B 240 (1), 113 (1984).

    Article  Google Scholar 

  68. J.L. Finney, Nature 266 (5600), 309 (1977).

    Article  CAS  Google Scholar 

  69. H.S.M. Coxeter, Regular Polytopes (3rd ed.) (Dover, New York, 1973).

    Google Scholar 

  70. P. Jalali, M. Li, Phys. Rev. B 71 (1), 014206 (2005).

    Article  CAS  Google Scholar 

  71. P.Y. Huang, S. Kurasch, A. Srivastava, V. Skakalova, J. Kotakoski, A.V. Krasheninnikov, R. Hovden, Q. Mao, J.C. Meyer, J. Smet, D.A. Muller, U. Kaiser, Nano Lett. 12 (2), 1081 (2012).

    Article  CAS  Google Scholar 

  72. Q.K. Li, M. Li, Chin. Sci. Bull. 56 (36), 3897 (2011).

    Article  Google Scholar 

  73. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, P. Popel, Philos. Mag. 89 (11), 967 (2009).

    Article  CAS  Google Scholar 

  74. V.T. Huett, K.F. Kelton, Appl. Phys. Lett. 81 (6), 1026 (2002).

    Article  CAS  Google Scholar 

  75. J.H. Perepezko, Mater. Sci. Eng. A 413, 389 (2005).

    Article  CAS  Google Scholar 

  76. K.F. Kelton, Intermetallics 14 (8), 966 (2006).

    Article  CAS  Google Scholar 

  77. C. Fan, X. Yang, Z. Tang, C.T. Liu, G. Chen, P.K. Liaw, H.G. Yan, G. Chen, Intermetallics 49, 36 (2014).

    Article  CAS  Google Scholar 

  78. I. Kalay, M. Kramer, R. Napolitano, Metall. Mater. Trans. A 46, 3356 (2015).

    Article  CAS  Google Scholar 

  79. D. Holland-Moritz, S. Stuber, H. Hartmann, T. Unruh, T. Hansen, A. Meyer, Phys. Rev. B 79 (6), 064204 (2009).

    Article  CAS  Google Scholar 

  80. Y.E. Kalay, I. Kalay, J. Hwang, P.M. Voyles, M.J. Kramer, Acta Mater. 60 (3), 994 (2012).

    Article  CAS  Google Scholar 

  81. A. Inoue, A. Takeuchi, Proc. Metastab. Nanostruct. Mater. 403, 1 (2002).

    CAS  Google Scholar 

  82. D.V. Louzguine-Luzgin, A.R. Yavari, M. Fukuhara, K. Ota, G.Q. Xie, G. Vaughan, A. Inoue, J. Alloys Compd. 431 (1), 136 (2007).

    Article  CAS  Google Scholar 

  83. W.L. Johnson, MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  84. A. Inoue, T. Zhang, J. Saida, M. Matsushita, M. Chen, T. Sakurai, Mater. Trans. JIM 40, 1137 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all of the researchers who have worked in this field over the decades for their inspiration. M.J.K. was supported by Ames Laboratory at the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02–07CH11358. M.L. acknowledges support from the State Key Laboratory of Advanced Metals and Materials of the University of Science and Technology Beijing.

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Matthew Kramer is the director of the Materials Science and Engineering Division at the US Department of Energy Ames Laboratory. He is also an adjunct professor of materials science and engineering at Iowa State University. His expertise is in materials characterization using advanced electron beam and synchrotron x-ray methods connecting synthesis to advanced modeling through in situ and in operando studies. Materials systems experience includes amorphous, liquid and nanocrystalline metals and alloys, functional materials (permanent magnets, thermal electrics) and high-temperature alloys. He has published more than 400 peer-reviewed papers and is a recipient of a number of awards from the US Department of Energy as well as a R&D 100 Award. Kramer can be reached by email at mjkramer@ameslab.gov.

Mo Li is a professor at the Georgia Institute of Technology. He received his PhD degree in applied physics in 1994 from the California Institute of Technology (Caltech). He was a postdoctoral fellow at Caltech and Argonne National Laboratory, and then joined Morgan Stanley and Co. From 1998 to 2001, he was an assistant professor at Johns Hopkins University. Li’s research includes the understanding of fundamental properties and processes of materials, and predicting material behaviors. His research focuses on algorithm development, simulation, and theoretical analysis. Li can be reached by email at mo.li@mse.gatech.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, M., Li, M. Changes in short- and medium-range order in metallic liquids during undercooling. MRS Bulletin 45, 943–950 (2020). https://doi.org/10.1557/mrs.2020.272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.272

Navigation